184 research outputs found

    Tuning the Thermoelectric Performance of CaMnO3-Based Ceramics by Controlled Exsolution and Microstructuring

    Get PDF
    The thermoelectric properties of CaMnO3-δ/CaMn2O4 composites were tuned via microstructuring and compositional adjustment. Single-phase rock-salt-structured CaO-MnO materials with Ca:Mn ratios larger than unity were produced in reducing atmosphere and subsequently densified by spark plasma sintering in vacuum. Annealing in air at 1340 °C between 1 and 24 h activated redox-driven exsolution and resulted in a variation in microstructure and CaMnO3-δ materials with 10 and 15 vol % CaMn2O4, respectively. The nature of the CaMnO3-δ/CaMn2O4 grain boundary was analyzed by transmission electron microscopy on short- and long-term annealed samples, and a sharp interface with no secondary phase formation was indicated in both cases. This was further complemented by density functional theory (DFT) calculations, which confirmed that the CaMnO3-δ indeed is a line compound. DFT calculations predict segregation of oxygen vacancies from the bulk of CaMnO3-δ to the interface between CaMnO3-δ and CaMn2O4, resulting in an enhanced electronic conductivity of the CaMnO3-δ phase. Samples with 15 vol % CaMn2O4 annealed for 24 h reached the highest electrical conductivity of 73 S·cm-1 at 900 °C. The lowest thermal conductivity was obtained for composites with 10 vol % CaMn2O4 annealed for 8 h, reaching 0.56 W·m-1K-1 at 700 °C. However, the highest thermoelectric figure-of-merit, zT, was obtained for samples with 15 vol % CaMn2O4 reaching 0.11 at temperatures between 800 and 900 °C, due to the enhanced power factor above 700 °C. This work represents an approach to boost the thermoelectric performance of CaMnO3-δ based composites

    Exploiting Spillovers to Forecast Crashes

    Full text link
    We develop Hawkes models in which events are triggered through self as well as cross-excitation. We examine whether incorporating cross-excitation improves the forecasts of extremes in asset returns compared to only self-excitation. The models are applied to US stocks, bonds and dollar exchange rates. In-sample, a Lagrange Multiplier test indicates the existence of cross-excitation for these series. Out-of-sample, we find that the models that include spillover effects forecast crashes and the Value-at-Risk significantly more accurately than the models without
    • …
    corecore