28 research outputs found

    1H-NMR and circular dichroism spectroscopic studies on changes in secondary structures of the sodium channel inactivation gate peptides as caused by the pentapeptide KIFMK.

    Get PDF
    The pentapeptide KIFMK, which contains three clustered hydrophobic amino acid residues of isoleucine, phenylalanine, and methionine (IFM) in the sodium channel inactivation gate on the cytoplasmic linker between domains III and IV (III-IV linker), is known to restore fast inactivation to the mutant sodium channels having a defective inactivation gate or to accelerate the inactivation of the wild-type sodium channels. To investigate the docking site of KIFMK and to clarify the mechanisms for restoring the fast inactivation, we have studied the interactions between KIFMK and the fragment peptide in the III-IV linker GGQDIFMTEEQK (MP-1A; G1484-K1495 in rat brain IIA) by one- and two-dimensional (1)H-NMR and circular dichroism (CD) spectroscopies. KIFMK was found to increase the helical content of MP-1A in 80% trifluoroethanol (TFE) solution by approximately 11%. A pentapeptide, KIFMT, which can restore inactivation but less effectively than KIFMK, also increased the helical content of MP-1A, but to a lesser extent ( approximately 6%) than did KIFMK. In contrast, KDIFMTK, which is ineffective in restoring inactivation, decreased the helical content ( approximately -4%). Furthermore, we studied the interactions between KIFMK and modified peptides from MP-1A, that is, MP-1NA (D1487N), MP-1QEA (E1492Q), or MP-1EQA (E1493Q). The KIFMK was found to increase the helical content of MP-1EQA to an extent nearly identical to that of MP-1A, whereas it was found to decrease those of MP-1NA and MP-1QEA. These findings mean that KIFMK, by allowing each of the Lys residues to interact with D1487 and E1492, respectively, stabilized the helical structure of the III-IV linker around the IFM residues. This helix-stabilizing effect of KIFMK on the III-IV linker may restore and/or accelerate fast inactivation to the sodium channels having a defective inactivation gate or to wild-type sodium channels

    The roles of conserved amino acids on substrate binding and conformational integrity of ClpB N-terminal domain

    No full text
    Escherichia coli heat shock protein ClpB disaggregates denatured protein in cooperation with the DnaK chaperone system. Several studies showed that the N-terminal domain is essential for the chaperone activity, but its role is still largely unknown. The N-terminal domain contains two structurally similar subdomains, and conserved amino acids Thr7 and Ser84 share the same position in two apparent sequence repeats. T7A and S84A substitutions affected chaperone activity of ClpB without significantly changing the native conformation [Liu, Z. et al. ( 2002) J. Mol. Biol. 321, 111-120]. In this study, we aimed to better understand the roles of several conserved amino acid residues, including Thr7 and Ser84, in the N-terminal domain. We investigated the effects of mutagenesis on substrate binding and conformational states of ClpB N-terminal domain fragment (ClpBN). Fluorescence polarization analysis showed that the T7A and S84A substitutions enhanced the interaction between ClpBN and protein aggregates. Interestingly, further analyses suggested that the mechanisms by which they do so are quite different. For T7A substitution, the increased substrate affinity could be due to a conformational change in the hydrophobic core as revealed by NMR spectroscopy. In contrast, for S84A, increased substrate binding would be explained by a unique conformational state of this mutant as revealed by pressure perturbation analysis. The thermal transition temperature of the S84A mutant, monitored by DSC, was 6.1 degrees C lower than that of wild-type. Our results revealed that conserved amino acids Thr7 and Ser84 both participated in maintaining the conformational integrity of the ClpB N-terminal domain
    corecore