4 research outputs found

    Indoor Air Quality Campaign in an Occupied Low-Energy House with a High Level of Spatial and Temporal Discretization

    No full text
    International audienceBackground and gaps. The topic of indoor air quality (IAQ) in low-energy buildings has received increasing interest over the past few years. Often based on two measurement points and on passive measurements over one week, IAQ studies are struggling to allow the calculation of pollutants exposure. Objectives. We would like to improve the evaluation of the health impacts, through measurements able to estimate the exposure of the occupants. Methodology. This article presents detailed IAQ measurements taken in an energy-efficient occupied house in France. Two campaigns were conducted in winter and spring. Total volatile organic compounds (TVOC), formaldehyde, the particle numbers and PM2.5, carbon dioxide (CO2), relative humidity (RH), temperature (T), ventilation airflows, and weather conditions were dynamically measured in several points. Laboratory and low-cost devices were used, and an inter-comparison was carried out for them. A survey was conducted to record all the daily activities of the inhabitants. IAQ performance indicators based on the different pollutants were calculated. Results. PM2.5 cumulative exposure did not exceed the threshold available in the literature. Formaldehyde concentrations were high, in the kitchen, where the average concentrations exceeded the threshold. However, the formaldehyde cumulative exposure of the occupants did not exceed the threshold. TVOC concentrations were found to reach the threshold. With these measurements performed with high spatial and temporal discretization, we showed that such detailed data allow for a better-quality health impacts assessment and for a better understanding of the transport of pollutants between rooms

    Indoor Air Quality Campaign in an Occupied Low-Energy House with a High Level of Spatial and Temporal Discretization

    No full text
    International audienceBackground and gaps. The topic of indoor air quality (IAQ) in low-energy buildings has received increasing interest over the past few years. Often based on two measurement points and on passive measurements over one week, IAQ studies are struggling to allow the calculation of pollutants exposure. Objectives. We would like to improve the evaluation of the health impacts, through measurements able to estimate the exposure of the occupants. Methodology. This article presents detailed IAQ measurements taken in an energy-efficient occupied house in France. Two campaigns were conducted in winter and spring. Total volatile organic compounds (TVOC), formaldehyde, the particle numbers and PM2.5, carbon dioxide (CO2), relative humidity (RH), temperature (T), ventilation airflows, and weather conditions were dynamically measured in several points. Laboratory and low-cost devices were used, and an inter-comparison was carried out for them. A survey was conducted to record all the daily activities of the inhabitants. IAQ performance indicators based on the different pollutants were calculated. Results. PM2.5 cumulative exposure did not exceed the threshold available in the literature. Formaldehyde concentrations were high, in the kitchen, where the average concentrations exceeded the threshold. However, the formaldehyde cumulative exposure of the occupants did not exceed the threshold. TVOC concentrations were found to reach the threshold. With these measurements performed with high spatial and temporal discretization, we showed that such detailed data allow for a better-quality health impacts assessment and for a better understanding of the transport of pollutants between rooms

    Relevance of CO2-based IAQ indicators: Feedback from long-term monitoring of three nearly zero-energy houses

    No full text
    International audienceNowadays, many countries include requirements for building airtightness in their current national regulations or energy-efficiency programs, mainly for concern about reducing building energy consumption due to air leakage. Moreover, more and more countries impose a mandatory justification with an air leakage measurement at building commissioning. Therefore, the uncertainty of the measurements results has become a key concern in several countries over the past year. More specifically, the influence of wind speed has been identified as one of the major sources of error on the measurement result. The goal of this paper is to present the experimental facility we design and built to improve the uncertainty estimates and the measurement protocol based on model scale experiments in controlled laboratory conditions. We first present the similarity criteria we identified for our model scale experiment. Secondly, we present the experimental design. Finally, we characterize the wind speed inside the wind tunnel and we present the preliminary results regarding the reproduction of fan pressurization tests on the model for different leakage distributions
    corecore