11 research outputs found

    Gene Organization in Rice Revealed by Full-Length cDNA Mapping and Gene Expression Analysis through Microarray

    Get PDF
    Rice (Oryza sativa L.) is a model organism for the functional genomics of monocotyledonous plants since the genome size is considerably smaller than those of other monocotyledonous plants. Although highly accurate genome sequences of indica and japonica rice are available, additional resources such as full-length complementary DNA (FL-cDNA) sequences are also indispensable for comprehensive analyses of gene structure and function. We cross-referenced 28.5K individual loci in the rice genome defined by mapping of 578K FL-cDNA clones with the 56K loci predicted in the TIGR genome assembly. Based on the annotation status and the presence of corresponding cDNA clones, genes were classified into 23K annotated expressed (AE) genes, 33K annotated non-expressed (ANE) genes, and 5.5K non-annotated expressed (NAE) genes. We developed a 60mer oligo-array for analysis of gene expression from each locus. Analysis of gene structures and expression levels revealed that the general features of gene structure and expression of NAE and ANE genes were considerably different from those of AE genes. The results also suggested that the cloning efficiency of rice FL-cDNA is associated with the transcription activity of the corresponding genetic locus, although other factors may also have an effect. Comparison of the coverage of FL-cDNA among gene families suggested that FL-cDNA from genes encoding rice- or eukaryote-specific domains, and those involved in regulatory functions were difficult to produce in bacterial cells. Collectively, these results indicate that rice genes can be divided into distinct groups based on transcription activity and gene structure, and that the coverage bias of FL-cDNA clones exists due to the incompatibility of certain eukaryotic genes in bacteria

    Exploring the in vivo subthreshold membrane activity of phasic firing in midbrain dopamine neurons

    No full text
    Dopamine is a key neurotransmitter that serves several essential functions in daily behaviors such as locomotion, motivation, stimulus coding, and learning. Disrupted dopamine circuits can result in altered functions of these behaviors which can lead to motor and psychiatric symptoms and diseases. In the central nervous system, dopamine is primarily released by dopamine neurons located in the substantia nigra pars compacta (SNc) and ventral tegmental area (VTA) within the midbrain, where they signal behaviorally-relevant information to downstream structures by altering their firing patterns. Their “pacemaker” firing maintains baseline dopamine levels at projection sites, whereas phasic “burst” firing transiently elevates dopamine concentrations. Firing activity of dopamine neurons projecting to different brain regions controls the activation of distinct dopamine pathways and circuits. Therefore, characterization of how distinct firing patterns are generated in dopamine neuron populations will be necessary to further advance our understanding of dopamine circuits that encode environmental information and facilitate a behavior. However, there is currently a large gap in the knowledge of biophysical mechanisms of phasic firing in dopamine neurons, as spontaneous burst firing is only observed in the intact brain, where access to intrinsic neuronal activity remains a challenge. So far, a series of highly-influential studies published in the 1980s by Grace and Bunney is the only available source of information on the intrinsic activity of midbrain dopamine neurons in vivo, in which sharp electrodes were used to penetrate dopamine neurons to record their intracellular activity. A novel approach is thus needed to fill in the gap. In vivo whole-cell patch-clamp method is a tool that enables access to a neuron’s intrinsic activity and subthreshold membrane potential dynamics in the intact brain. It has been used to record from neurons in superficial brain regions such as the cortex and hippocampus, and more recently in deeper regions such as the amygdala and brainstem, but has not yet been performed on midbrain dopamine neurons. Thus, the deep brain in vivo patch-clamp recording method was established in the lab in an attempt to investigate the subthreshold membrane potential dynamics of tonic and phasic firing in dopamine neurons in vivo. The use of this method allowed the first in-depth examination of burst firing and its subthreshold membrane potential activity of in vivo midbrain dopamine neurons, which illuminated that firing activity and subthreshold membrane activity of dopamine neurons are very closely related. Furthermore, systematic characterization of subthreshold membrane patterns revealed that tonic and phasic firing patterns of in vivo dopamine neurons can be classified based on three distinct subthreshold membrane signatures: 1) tonic firing, characterized by stable, non-fluctuating subthreshold membrane potentials; 2) rebound bursting, characterized by prominent hyperpolarizations that initiate bursting; and 3) plateau bursting, characterized by transient, depolarized plateaus on which bursting terminates. The results thus demonstrated that different types of phasic firing are driven by distinct patterns of subthreshold membrane activity, which may potentially signal distinct types of information. Taken together, the deep brain in vivo patch-clamp technique can be used for the investigation of firing mechanisms of dopamine neurons in the intact brain and will help address open questions in the dopamine field, particularly regarding the biophysical mechanisms of burst firing in dopamine neurons that control behavior.Dopamin ist ein essenzieller Neurotransmitter, der mehrere wesentliche Funktionen bei alltäglichen Verhaltensweisen wie Fortbewegung, Motivation, Reizkodierung und Lernen erfüllt. Störungen im dopaminergen System können zu veränderten Funktionen dieser Verhaltensweisen führen, was zu motorischen und psychiatrischen Symptomen und Krankheiten führen kann. Im zentralen Nervensystem wird der Großteil des Dopamins von dopaminergen Neuronen freigesetzt, die sich in der Substantia nigra pars compacta (SNc) und im ventralen tegmentum (VTA) im Mittelhirn befinden, wo sie verhaltensrelevante Informationen an nachgeschaltete Strukturen überitteln, indem sie ihre Feuerungsmuster verändern. Ihre "Schrittmacher"-Aktivität hält die Dopamin-Konzentration an den Projektionsstellen auf einem konstant niedrigen Niveau aufrecht, während phasisches "Burst"-Feuern die Dopamin-Konzentration vorübergehend ansteigen lässt..

    Early-life serotonin dysregulation affects the migration and positioning of cortical interneuron subtypes

    No full text
    Early-life deficiency of the serotonin transporter (SERT) gives rise to a wide range of psychiatric-relevant phenotypes; however, the molecular and cellular targets of serotonin dyregulation during neural circuit formation remain to be identified. Interestingly, migrating cortical interneurons (INs) derived from the caudal ganglionic eminence (CGE) have been shown to be more responsive to serotonin-mediated signalling compared with INs derived from the medial ganglionic eminence (MGE). Here we investigated the impact of early-life SERT deficiency on the migration and positioning of CGE-derived cortical INs in SERT-ko mice and in mice exposed to the SERT inhibitor fluoxetine during the late embryonic period. Using confocal time-lapse imaging and microarray-based expression analysis we found that genetic and pharmacological SERT deficiency significantly increased the migratory speed of CGE-derived INs and affected transcriptional programmes regulating neuronal migration. Postnatal studies revealed that SERT deficiency altered the cortical laminar distribution of subtypes of CGE-derived INs but not MGE-derived INs. More specifically, we found that the distribution of vasointestinal peptide (VIP)-expressing INs in layer 2/3 was abnormal in both genetic and pharmacological SERT-deficiency models. Collectively, these data indicate that early-life SERT deficiency has an impact on the migration and molecular programmes of CGE-derived INs, thus leading to specific alterations in the positioning of VIP-expressing INs. These data add to the growing evidence that early-life serotonin dysregulation affects cortical microcircuit formation and contributes to the emergence of psychiatric-relevant phenotypes

    Studies on Sleep-wake Patterns of the Frail Elderly

    No full text

    Subthreshold repertoire and threshold dynamics of midbrain dopamine neuron firing in vivo

    No full text
    The firing pattern of ventral midbrain dopamine neurons is controlled by afferent and intrinsic activity to generate prediction error signals that are essential for reward-based learning. Given the absence of intracellular in vivo recordings in the last three decades, the subthreshold membrane potential events that cause changes in dopamine neuron firing patterns remain unknown. By establishing stable in vivo whole-cell recordings of >100 spontaneously active midbrain dopamine neurons in anaesthetized mice, we identified the repertoire of subthreshold membrane potential signatures associated with distinct in vivo firing patterns. We demonstrate that dopamine neuron in vivo activity deviates from a single spike pacemaker pattern by eliciting transient increases in firing rate generated by at least two diametrically opposing biophysical mechanisms: a transient depolarization resulting in high frequency plateau bursts associated with a reactive, depolarizing shift in action potential threshold; and a prolonged hyperpolarization preceding slower rebound bursts characterized by a predictive, hyperpolarizing shift in action potential threshold. Our findings therefore illustrate a framework for the biophysical implementation of prediction error and sensory cue coding in dopamine neurons by tuning action potential threshold dynamics

    In vivo patch-clamp recordings reveal distinct subthreshold signatures and threshold dynamics of midbrain dopamine neurons

    No full text
    The in vivo firing patterns of ventral midbrain dopamine neurons are controlled by afferent and intrinsic activity to generate sensory cue and prediction error signals that are essential for reward-based learning. Given the absence of in vivo intracellular recordings during the last three decades, the subthreshold membrane potential events that cause changes in dopamine neuron firing patterns remain unknown. To address this, we established in vivo whole-cell recordings and obtained over 100 spontaneously active, immunocytochemically-defined midbrain dopamine neurons in isoflurane-anaesthetized adult mice. We identified a repertoire of subthreshold membrane potential signatures associated with distinct in vivo firing patterns. Dopamine neuron activity in vivo deviated from single-spike pacemaking by phasic increases in firing rate via two qualitatively distinct biophysical mechanisms: 1) a prolonged hyperpolarization preceding rebound bursts, accompanied by a hyperpolarizing shift in action potential threshold; and 2) a transient depolarization leading to high-frequency plateau bursts, associated with a depolarizing shift in action potential threshold. Our findings define a mechanistic framework for the biophysical implementation of dopamine neuron firing patterns in the intact brain

    The gephyrin scaffold modulates cortical layer 2/3 pyramidal neuron responsiveness to single whisker stimulation

    Get PDF
    Abstract Gephyrin is the main scaffolding protein at inhibitory postsynaptic sites, and its clusters are the signaling hubs where several molecular pathways converge. Post-translational modifications (PTMs) of gephyrin alter GABAA receptor clustering at the synapse, but it is unclear how this affects neuronal activity at the circuit level. We assessed the contribution of gephyrin PTMs to microcircuit activity in the mouse barrel cortex by slice electrophysiology and in vivo two-photon calcium imaging of layer 2/3 (L2/3) pyramidal cells during single-whisker stimulation. Our results suggest that, depending on the type of gephyrin PTM, the neuronal activities of L2/3 pyramidal neurons can be differentially modulated, leading to changes in the size of the neuronal population responding to the single-whisker stimulation. Furthermore, we show that gephyrin PTMs have their preference for selecting synaptic GABAA receptor subunits. Our results identify an important role of gephyrin and GABAergic postsynaptic sites for cortical microcircuit function during sensory stimulation

    ショウガイ ヨウジ ノ シエン キョウイク ニ オケル ヒョウカ ホウ ノ カイハツ コミュニケーション コウドウ オ チュウシン ト シタ チェック リスト ノ シヨウ ニ ヨル ケントウ

    No full text
    corecore