3,569 research outputs found

    Calibration of the Particle Density in Cellular-Automaton Models for Traffic Flow

    Full text link
    We introduce density dependence of the cell size in cellular-automaton models for traffic flow, which allows a more precise correspondence between real-world phenomena and what observed in simulation. Also, we give an explicit calibration of the particle density particularly for the asymmetric simple exclusion process with some update rules. We thus find that the present method is valid in that it reproduces a realistic flow-density diagram.Comment: 2 pages, 2 figure

    Interaction of numerosity and time in prefrontal and parietal cortex

    Get PDF
    It has been proposed that numerical and temporal information are processed by partially overlapping magnitude systems. Interactions across different magnitude domains could occur both at the level of perception and decision-making. However, their neural correlates have been elusive. Here, using functional magnetic resonance imaging in humans, we show that the right intraparietal cortex (IPC) and inferior frontal gyrus (IFG) are jointly activated by duration and numerosity discrimination tasks, with a congruency effect in the right IFG. To determine whether the IPC and the IFG are involved in response conflict (or facilitation) or modulation of subjective passage of time by numerical information, we examined their functional roles using transcranial magnetic stimulation (TMS) and two different numerosity-time interaction tasks: duration discrimination and time reproduction tasks. Our results show that TMS of the right IFG impairs categorical duration discrimination, whereas that of the right IPC modulates the degree of influence of numerosity on time perception and impairs precise time estimation. These results indicate that the right IFG is specifically involved at the categorical decision stage, whereas bleeding of numerosity information on perception of time occurs within the IPC. Together, our findings suggest a two-stage model of numerosity-time interactions whereby the interaction at the perceptual level occurs within the parietal region and the interaction at categorical decisions takes place in the prefrontal cortex

    Role of Exchange in Density Functional Theory for Weakly-Interacting Systems: Quantum Monte Carlo Analysis of Electron Density and Interaction Energy

    Full text link
    We analyze the density functional theory (DFT) description of weak interactions by employing diffusion and reptation quantum Monte Carlo (QMC) calculations, for a set of benzene-molecule complexes. While the binding energies depend significantly on the exchange correlation approximation employed for DFT calculations, QMC calculations show that the electron density is accurately described within DFT, including the quantitative features in the reduced density gradient. We elucidate how the enhancement of the exchange energy density at a large reduced density gradient plays a critical role in obtaining accurate DFT description of weakly-interacting systems.Comment: 6 Pages, 3 figures, In press at Phys. Rev.

    Seeing motion of controlled object improves grip timing in adults with autism spectrum condition: evidence for use of inverse dynamics in motor control

    Get PDF
    Previous studies (Haswell et al. in Nat Neurosci 12:970–972, 2009; Marko et al. in Brain J Neurol 138:784–797, 2015) reported that people with autism rely less on vision for learning to reach in a force field. This suggested a possibility that they have difficulties in extracting force information from visual motion signals, a process called inverse dynamics computation. Our recent study (Takamuku et al. in J Int Soc Autism Res 11:1062–1075, 2018) examined the ability of inverse computation with two perceptual tasks and found similar performances in typical and autistic adults. However, this tested the computation only in the context of sensory perception while it was possible that the suspected disability is specific to the motor domain. Here, in order to address the concern, we tested the use of inverse dynamics computation in the context of motor control by measuring changes in grip timing caused by seeing/not seeing a controlled object. The motion of the object was informative of its inertial force and typical participants improved their grip timing based on the visual feedback. Our interest was on whether the autism participants show the same improvement. While some autism participants showed atypical hand slowing when seeing the controlled object, we found no evidence of abnormalities in the inverse computation in our grip timing task or in a replication of the perceptual task. This suggests that the ability of inverse dynamics computation is preserved not only for sensory perception but also for motor control in adults with autism

    Visual perceptual echo reflects learning of regularities in rapid luminance sequences

    Get PDF
    A novel neural signature of active visual processing has recently been described in the form of the ‘perceptual echo’, in which the cross-correlation between a sequence of randomly fluctuating luminance values and occipital electrophysiological (EEG) signals exhibits a long-lasting periodic (~100ms cycle) reverberation of the input stimulus (VanRullen & Macdonald, 2012). As yet, however, the mechanisms underlying the perceptual echo and its function remain unknown. Reasoning that natural visual signals often contain temporally predictable, though non-periodic features, we hypothesized that the perceptual echo may reflect a periodic process associated with regularity learning. To test this hypothesis, we presented subjects with successive repetitions of a rapid non-periodic luminance sequence, and examined the effects on the perceptual echo, finding that echo amplitude linearly increased with the number of presentations of a given luminance sequence. These data suggest that the perceptual echo reflects a neural signature of regularity learning. Furthermore, when a set of repeated sequences was followed by a sequence with inverted luminance polarities, the echo amplitude decreased to the same level evoked by a novel stimulus sequence. Crucially, when the original stimulus sequence was re-presented, the echo amplitude returned to a level consistent with the number of presentations of this sequence, indicating that the visual system retained sequence specific information, for many seconds, even in the presence of intervening visual input. Altogether, our results reveal a previously undiscovered regularity learning mechanism within the human visual system, reflected by the perceptual echo
    • …
    corecore