372 research outputs found
Structure of Excited States of 10Be studied with Antisymmetrized Molecular Dynamics
We study structure of excited states of 10Be with the method of variation
after spin parity projection in the framework of antisymmetrized molecular
dynamics. Present calculations describe many excited states and reproduce the
experimental data of E2 and E1 transitions and the new data of the
transition strength successfully. We make systematic discussions on the
molecule-like structures of light unstable nuclei and the important role of the
valence neutrons based on the results obtained with the framework which is free
from such model assumptions as the existence of inert cores and clusters.Comment: 15 pages, RevTex, seven postscript figures (using epsf.sty
Structure of excited states of Be-11 studied with Antisymmetrized Molecular Dynamics
The structures of the ground and excited states of Be-11 were studied with a
microscopic method of antisymmetrized molecular dynamics. The theoretical
results reproduce the abnormal parity of the ground state and predict various
kinds of excited states. We suggest a new negative-parity band with a
well-developed clustering structure which reaches high-spin states. Focusing on
a clustering structure, we investigated structure of the ground and
excited states. We point out that molecular orbits play important roles for the
intruder ground state and the low-lying states. The features of
the breaking of clusters were also studied with the help of data for
Gamow-Teller transitions.Comment: 24 pages, 7 figures, to be submitted to Phys.Rev.
Structures and Transitions in Light Unstable Nuclei
We study the structures of the unstable Be isotopes with the theoretical
method of antisymmetrized molecular dynamics. It is found that various
structures of the excited states appear in the low-energy region of
neutron-rich Be nuclei. Focusing on the 2 clustering, we analyze the
intrinsic structures with the help of the experimental data of Gamow-Teller
transitions.Comment: 8 pages and 4 figure
Dipole resonances in light neutron-rich nuclei studied with time-dependent calculations of antisymmetrized molecular dynamics
In order to study isovector dipole response of neutron-rich nuclei, we have
applied a time-dependent method of antisymmetrized molecular dynamics. The
dipole resonances in Be, B and C isotopes have been investigated. In Be,
B, C, collective modes of the vibration between a core and
valence neutrons cause soft resonances at the excitation energy MeV
below the giant dipole resonance(GDR). In C, we found that a remarkable
peak at MeV corresponds to coherent motion of four valence neutrons
against a C core, while the GDR arises from the core vibration in the
MeV region. In B and C, the dipole strengths in the low
energy region decline compared with those in B and C. We also
discuss the energy weighted sum rule for the transitions.Comment: 12 figures, submitted to Phys. Rev.
New effective nuclear forces with a finite-range three-body term and their application to AMD+GCM calculations
We propose new effective inter-nucleon forces with a finite-range three-body
operator. The proposed forces are suitable for describing the nuclear structure
properties over a wide mass number region, including the saturation point of
nuclear matter. The forces are applied to microscopic calculations of
() nuclei and O isotopes with a method of antisymmetrized molecular
dynamics. We present the characteristics of the forces and discuss the
importance of the finite-range three-body term.Comment: 15 pages, 11 figures, submitted to Phys.Rev.
Deformations in N=14 isotones
Systematic analysis of deformations in neutron-rich N=14 isotones was done
based on the method of antisymmetrized molecular dynamics. The property of the
shape coexistence in Si, which is known to have the oblate ground state
and the prolate excited states, was successfully described. The results suggest
that the shape coexistence may occur also in neutron-rich N=14 nuclei as well
as Si. It was found that the oblate neutron shapes are favored because
of the spin-orbit force in most of N=14 isotones. moments and
transition strengths in the neutron-rich nuclei were discussed in relation to
the intrinsic deformations, and a possible difference between the proton and
neutron deformations in Ne was proposed.Comment: 13 pages, 7 figures, sumitted to Phys.Rev.
Proton and neutron correlations in B
We investigate positive-parity states of B with the calculation of
antisymmetrized molecular dynamics focusing on pair correlations. We
discuss effects of the spin-orbit interaction on energy spectra and
correlations of the , , and states. The
state has almost no energy gain of the spin-orbit interaction, whereas
the state gains the spin-orbit interaction energy largely to come down
to the ground state. We interpret a part of the two-body spin-orbit interaction
in the adopted effective interactions as a contribution of the genuine
force, and find it to be essential for the level ordering of the and
states in B. We also apply a model to discuss
effects of the spin-orbit interaction on and pairs around the
2 core. In the spin-aligned state, the spin-orbit
interaction affects the pair attractively and keeps the pair close
to the core, whereas, in the state, it gives a minor effect to the
pair. In the state, the pair is somewhat
dissociated by the spin-orbit interaction.Comment: 12 pages 9 figure
Superdeformation and clustering in Ca studied with Antisymmetrized Molecular Dynamics
Deformed states in Ca are investigated with a method of
antisymmetrized molecular dynamics. Above the spherical ground state,
rotational bands arise from a normal deformation and a superdeformation as well
as an oblate deformation. The calculated energy spectra and transition
strengths in the superdeformed band reasonably agree to the experimental data
of the superdeformed band starting from the state at 5.213 MeV. By the
analysis of single-particle orbits, it is found that the superdeformed state
has particle-hole nature of an - configuration. One of new findings is
parity asymmetric structure with C+Si-like clustering in the
superdeformed band. We predict that C+Si molecular bands may be
built above the superdeformed band due to the excitation of inter-cluster
motion. They are considered to be higher nodal states of the superdeformed
state. We also suggest negative-parity bands caused by the parity asymmetric
deformation.Comment: 13 figures, submitted to Phys. Rev.
Axial vector tetraquark with S=+2
Possibility of an axial vector isoscalar tetraquark with
is discussed. If the pentaquark has the
configuration, the isoscalar
(-meson) state with is expected to
exist in the mass region lower than or close to the mass of .
Within a flux-tube quark model, a possible resonant state of
is suggested to appear around 1.4 GeV with the
width MeV. We propose that the -meson is a
good candidate for the tetraquark search, which would be observed in the
decay channel.Comment: 20 pages, 5 figures, submitted to Phys.Rev.
- âŠ