11 research outputs found

    The variable region of the 3' untranslated region is a critical virulence factor in the Far-Eastern subtype of tick-borne encephalitis virus in mouse model

    Get PDF
    Tick-borne encephalitis virus (TBEV) is a major arbovirus that causes thousands of cases of severe neurological illness in humans annually. However, virulence factors and pathological mechanisms of TBEV remain largely unknown. To identify the virulence factors, we constructed chimeric viruses between two TBEV strains of the Far-Eastern subtype, Sofjin-HO (highly pathogenic) and Oshima 5-10 (low pathogenic). The replacement of the coding region for the structural and non-structural proteins from Sofjin into Oshima showed a partial increase of the viral pathogenicity in a mouse model. Oshima-based chimeric viruses with the variable region of the 3' UTR of Sofjin, which had a deletion of 207 nt, killed 100% of mice and showed almost the same virulence as Sofjin. Replacement of the variable region of the 3' UTR from Sofjin into Oshima did not increase viral multiplication in cultured cells and a mouse model at the early phase of viral entry into the brain. At the terminal phase of viral infection in mice, the virus titre of the Oshinna-based chimeric virus with the variable region of the 3' UTR of Sofjin reached a level identical to that of Sofjin and showed a similar histopathological change in the brain tissue. This is the first report to show that the variable region of the 3' UTR is a critical virulence factor in mice. These findings encourage further study to understand the mechanisms of the pathogenicity of TBEV, and to develop preventative and therapeutic strategies for tick-borne encephalitis

    Construction of a replicon and an infectious cDNA clone of the Sofjin strain of the Far-Eastern subtype of tick-borne encephalitis virus

    Get PDF
    Tick-borne encephalitis virus (TBEV) causes severe encephalitis in humans. The Sofjin-HO strain is the prototype strain of the TBEV Far-Eastern subtype and is highly pathogenic in a mouse model. In this study, we constructed replicons and infectious cDNA clones of the Sofjin-HO strain. The replication of the replicon RNA was confirmed, and infectious viruses were recovered from the infectious cDNA clone. The recombinant viruses showed similar virulence characteristics to those of the parental virus. While characterizing the replicon and infectious cDNA, several amino acid differences derived from cell culture adaptations were analysed. The amino acids differences at E position 496 and NS4A position 58 were found to affect viral replication. The Gly- or Ala-to-Glu substitution at E position 122 was shown to increase neuroinvasiveness in mice. These replicons and infectious cDNA clones are useful in revealing the viral molecular determinant involved in the replication and pathogenicity of TBEV

    A Critical Determinant of Neurological Disease Associated with Highly Pathogenic Tick-Borne Flavivirus in Mice

    Get PDF
    Tick-borne encephalitis virus (TBEV) and Omsk hemorrhagic fever virus (OHFV) are highly pathogenic tick-borne flaviviruses; TBEV causes neurological disease in humans, while OHFV causes a disease typically identified with hemorrhagic fever. Although TBEV and OHFV are closely related genetically, the viral determinants responsible for these distinct disease phenotypes have not been identified. In this study, chimeric viruses incorporating components of TBEV and OHFV were generated using infectious clone technology, and their pathological characteristics were analyzed in a mouse model to identify virus-specific determinants of disease. We found that only four amino acids near the C terminus of the NS5 protein were primarily responsible for the development of neurological disease. Mutation of these four amino acids had no effect on viral replication or histopathological features, including inflammatory responses, in mice. These findings suggest a critical role for NS5 in stimulating neuronal dysfunction and degeneration following TBEV infection and provide new insights into the molecular mechanisms underlying the pathogenesis of tick-borne flaviviruses

    Susceptibility to flavivirus-specific antiviral response of Oas1b affects the neurovirulence of the Far-Eastern subtype of tick-borne encephalitis virus

    Get PDF
    Tick-borne encephalitis virus (TBEV) is a zoonotic agent that causes fatal encephalitis in humans. 2'-5'-oligoadenylate synthetase 1b (Oas1b) has been identified as a flavivirus resistance gene, but most inbred laboratory mice do not possess a functional Oas1b gene. In this study, a congenic strain carrying a functional Oas1b gene, B6.MSM-Oas, was used to evaluate the pathogenicity of Far-Eastern TBEV. Although intracerebral infection of B6.MSM-Oas mice by Oshima 5-10 resulted in limited signs of illness, infection by Sofjin-HO resulted in death with severe neurologic signs. While Oshima 5-10 was cleared from the brain, Sofjin-HO was not cleared despite a similar level of expression of the intact Oas1b gene. Necrotic neurons with viral antigens and inflammatory reactions were observed in the brain infected with Sofjin-HO. These data indicate that the different susceptibility to the antiviral activity of Oas1b resulted in a difference in neurovirulence in the two TBEV strains
    corecore