46 research outputs found

    Three-moment approximation for the mean queue time of a GI/G/1 queue

    No full text
    <p>The approximation of a GI/G/1 queue plays a key role in the performance evaluation of queueing systems. To improve the conventional two-moment approximations, we propose a three-moment approximation for the mean queue time of a GI/G/1 queue based on the exact results of the H<sub>2</sub>/M/1 queue. The model is validated over a wide range of numerical experiments. Based on paired <i>t</i>-tests, our three-moment approximation outperforms the two-moment ones when the inter-arrival time variability is greater than one.</p

    Swap* operator.

    No full text
    This paper studies the scheduling of autonomous mobile robots (AMRs) at hospitals where the stochastic travel times and service times of AMRs are affected by the surrounding environment. The routes of AMRs are planned to minimize the daily cost of the hospital (including the AMR fixed cost, penalty cost of violating the time window, and transportation cost). To efficiently generate high-quality solutions, some properties are identified and incorporated into an improved tabu search (I-TS) algorithm for problem-solving. Experimental evaluations demonstrate that the I-TS algorithm outperforms existing methods by producing high-quality solutions. Based on the characteristics of healthcare requests and the AMR working environment, scheduling AMRs reasonably can effectively provide medical services, improve the utilization of medical resources, and reduce hospital costs.</div

    Fitness curve of total cost.

    No full text
    (a) 50-request instances. (b) 100-request instances.</p

    Relocation* operator.

    No full text
    This paper studies the scheduling of autonomous mobile robots (AMRs) at hospitals where the stochastic travel times and service times of AMRs are affected by the surrounding environment. The routes of AMRs are planned to minimize the daily cost of the hospital (including the AMR fixed cost, penalty cost of violating the time window, and transportation cost). To efficiently generate high-quality solutions, some properties are identified and incorporated into an improved tabu search (I-TS) algorithm for problem-solving. Experimental evaluations demonstrate that the I-TS algorithm outperforms existing methods by producing high-quality solutions. Based on the characteristics of healthcare requests and the AMR working environment, scheduling AMRs reasonably can effectively provide medical services, improve the utilization of medical resources, and reduce hospital costs.</div

    Depot insertion operation.

    No full text
    This paper studies the scheduling of autonomous mobile robots (AMRs) at hospitals where the stochastic travel times and service times of AMRs are affected by the surrounding environment. The routes of AMRs are planned to minimize the daily cost of the hospital (including the AMR fixed cost, penalty cost of violating the time window, and transportation cost). To efficiently generate high-quality solutions, some properties are identified and incorporated into an improved tabu search (I-TS) algorithm for problem-solving. Experimental evaluations demonstrate that the I-TS algorithm outperforms existing methods by producing high-quality solutions. Based on the characteristics of healthcare requests and the AMR working environment, scheduling AMRs reasonably can effectively provide medical services, improve the utilization of medical resources, and reduce hospital costs.</div

    Average service probability <i>r</i><sub><i>avg</i></sub> of three periods.

    No full text
    Average service probability ravg of three periods.</p

    New instances based on three instances in the Solomon benchmark (C, R, and RC).

    No full text
    New instances based on three instances in the Solomon benchmark (C, R, and RC).</p

    Fitness value curve of total cost.

    No full text
    This paper studies the scheduling of autonomous mobile robots (AMRs) at hospitals where the stochastic travel times and service times of AMRs are affected by the surrounding environment. The routes of AMRs are planned to minimize the daily cost of the hospital (including the AMR fixed cost, penalty cost of violating the time window, and transportation cost). To efficiently generate high-quality solutions, some properties are identified and incorporated into an improved tabu search (I-TS) algorithm for problem-solving. Experimental evaluations demonstrate that the I-TS algorithm outperforms existing methods by producing high-quality solutions. Based on the characteristics of healthcare requests and the AMR working environment, scheduling AMRs reasonably can effectively provide medical services, improve the utilization of medical resources, and reduce hospital costs.</div

    An illustrated example.

    No full text
    This paper studies the scheduling of autonomous mobile robots (AMRs) at hospitals where the stochastic travel times and service times of AMRs are affected by the surrounding environment. The routes of AMRs are planned to minimize the daily cost of the hospital (including the AMR fixed cost, penalty cost of violating the time window, and transportation cost). To efficiently generate high-quality solutions, some properties are identified and incorporated into an improved tabu search (I-TS) algorithm for problem-solving. Experimental evaluations demonstrate that the I-TS algorithm outperforms existing methods by producing high-quality solutions. Based on the characteristics of healthcare requests and the AMR working environment, scheduling AMRs reasonably can effectively provide medical services, improve the utilization of medical resources, and reduce hospital costs.</div

    2-opt* operator.

    No full text
    This paper studies the scheduling of autonomous mobile robots (AMRs) at hospitals where the stochastic travel times and service times of AMRs are affected by the surrounding environment. The routes of AMRs are planned to minimize the daily cost of the hospital (including the AMR fixed cost, penalty cost of violating the time window, and transportation cost). To efficiently generate high-quality solutions, some properties are identified and incorporated into an improved tabu search (I-TS) algorithm for problem-solving. Experimental evaluations demonstrate that the I-TS algorithm outperforms existing methods by producing high-quality solutions. Based on the characteristics of healthcare requests and the AMR working environment, scheduling AMRs reasonably can effectively provide medical services, improve the utilization of medical resources, and reduce hospital costs.</div
    corecore