4,632 research outputs found
Kondo Effect in Fermi Systems with a Gap: A Renormalization Group Study
We present the results of a Wilson Renormalization Group study of the
single-impurity Kondo and Anderson models in a system with a gap in the
conduction electron spectrum. The behavior of the impurity susceptibility and
the zero-frequency response function, are discussed in the
cases with and without particle-hole symmetry. In addition, for the asymmetric
Anderson model the correlation functions, , are computed.Comment: 10 pages, 10 figure
Collimating lenses from non-Euclidean transformation optics
Based on the non-Euclidean transformation optics, we design a thin
metamaterial lens that can achieve wide-beam radiation by embedding a simple
source (a point source in three-dimensional case or a line current source in
two-dimensional case). The scheme is performed on a layer-by-layer geometry to
convert curved surfaces in virtual space to flat sheets, which pile up and form
the entire lens in physical space. Compared to previous designs, the lens has
no extreme material parameters. Simulation results confirm its functionality.Comment: 12 pages, 6 figure
Theories for multiple resonances
Two microscopic theories for multiple resonances in nuclei are compared,
n-particle-hole RPA and quantized Time-Dependent Hartree-Fock (TDHF). The
Lipkin-Meshkov-Glick model is used as test case. We find that quantized TDHF is
superior in many respects, except for very small systems.Comment: 14 Pages, 3 figures available upon request
Scale Dependent Dimension of Luminous Matter in the Universe
We present a geometrical model of the distribution of luminous matter in the
universe, derived from a very simple reaction-diffusion model of turbulent
phenomena. The apparent dimension of luminous matter, , depends linearly
on the logarithm of the scale under which the universe is viewed: , where is a correlation length.
Comparison with data from the SARS red-shift catalogue, and the LEDA database
provides a good fit with a correlation length Mpc. The
geometrical interpretation is clear: At small distances, the universe is
zero-dimensional and point-like. At distances of the order of 1 Mpc the
dimension is unity, indicating a filamentary, string-like structure; when
viewed at larger scales it gradually becomes 2-dimensional wall-like, and
finally, at and beyond the correlation length, it becomes uniform.Comment: 6 pages, 2 figure
First results of material charging in the space environment
A satellite experiment, designed to measure potential charging of typical thermal control materials at near geosynchronous altitude, was flown as part of the SCATHA program. Direct observations of charging of typical satellite materials in a natural charging event ( 5 keV) are presented. The results show some features which differ significantly from previous laboratory simulations of the environment
Field-induced water electrolysis switches an oxide semiconductor from an insulator to a metal
Here we demonstrate that water-infiltrated nanoporous glass electrically
switches an oxide semiconductor from an insulator to metal. We fabricated the
field effect transistor structure on an oxide semiconductor, SrTiO3, using
100%-water-infiltrated nanoporous glass - amorphous 12CaO*7Al2O3 - as the gate
insulator. For positive gate voltage, electron accumulation, water electrolysis
and electrochemical reduction occur successively on the SrTiO3 surface at room
temperature, leading to the formation of a thin (~3 nm) metal layer with an
extremely high electron concentration of 10^15-10^16 cm^-2, which exhibits
exotic thermoelectric behaviour.Comment: 21 pages, 12 figure
- …