4,632 research outputs found

    Kondo Effect in Fermi Systems with a Gap: A Renormalization Group Study

    Full text link
    We present the results of a Wilson Renormalization Group study of the single-impurity Kondo and Anderson models in a system with a gap in the conduction electron spectrum. The behavior of the impurity susceptibility and the zero-frequency response function, T>T> are discussed in the cases with and without particle-hole symmetry. In addition, for the asymmetric Anderson model the correlation functions, <Sσ(0)><\vec S \cdot\vec \sigma (0)>,,and, and are computed.Comment: 10 pages, 10 figure

    Collimating lenses from non-Euclidean transformation optics

    Full text link
    Based on the non-Euclidean transformation optics, we design a thin metamaterial lens that can achieve wide-beam radiation by embedding a simple source (a point source in three-dimensional case or a line current source in two-dimensional case). The scheme is performed on a layer-by-layer geometry to convert curved surfaces in virtual space to flat sheets, which pile up and form the entire lens in physical space. Compared to previous designs, the lens has no extreme material parameters. Simulation results confirm its functionality.Comment: 12 pages, 6 figure

    Theories for multiple resonances

    Get PDF
    Two microscopic theories for multiple resonances in nuclei are compared, n-particle-hole RPA and quantized Time-Dependent Hartree-Fock (TDHF). The Lipkin-Meshkov-Glick model is used as test case. We find that quantized TDHF is superior in many respects, except for very small systems.Comment: 14 Pages, 3 figures available upon request

    Scale Dependent Dimension of Luminous Matter in the Universe

    Get PDF
    We present a geometrical model of the distribution of luminous matter in the universe, derived from a very simple reaction-diffusion model of turbulent phenomena. The apparent dimension of luminous matter, D(l)D(l), depends linearly on the logarithm of the scale ll under which the universe is viewed: D(l)3log(l/l0)/log(ξ/l0)D(l) \sim 3\log(l/l_0)/\log(\xi/l_0), where ξ\xi is a correlation length. Comparison with data from the SARS red-shift catalogue, and the LEDA database provides a good fit with a correlation length ξ300\xi \sim 300 Mpc. The geometrical interpretation is clear: At small distances, the universe is zero-dimensional and point-like. At distances of the order of 1 Mpc the dimension is unity, indicating a filamentary, string-like structure; when viewed at larger scales it gradually becomes 2-dimensional wall-like, and finally, at and beyond the correlation length, it becomes uniform.Comment: 6 pages, 2 figure

    First results of material charging in the space environment

    Get PDF
    A satellite experiment, designed to measure potential charging of typical thermal control materials at near geosynchronous altitude, was flown as part of the SCATHA program. Direct observations of charging of typical satellite materials in a natural charging event ( 5 keV) are presented. The results show some features which differ significantly from previous laboratory simulations of the environment

    Field-induced water electrolysis switches an oxide semiconductor from an insulator to a metal

    Full text link
    Here we demonstrate that water-infiltrated nanoporous glass electrically switches an oxide semiconductor from an insulator to metal. We fabricated the field effect transistor structure on an oxide semiconductor, SrTiO3, using 100%-water-infiltrated nanoporous glass - amorphous 12CaO*7Al2O3 - as the gate insulator. For positive gate voltage, electron accumulation, water electrolysis and electrochemical reduction occur successively on the SrTiO3 surface at room temperature, leading to the formation of a thin (~3 nm) metal layer with an extremely high electron concentration of 10^15-10^16 cm^-2, which exhibits exotic thermoelectric behaviour.Comment: 21 pages, 12 figure
    corecore