9 research outputs found
Lomasomes and Other Fungal Plasma Membrane Macroinvaginations Have a Tubular and Lamellar Genesis
The plasma membrane of filamentous fungi forms large-sized invaginations, which are either tubes or parietal vesicles. Vesicular macroinvaginations at the ultrastructural level correspond to classical lomasomes. There is an assumption that vesicular macroinvaginations/lomasomes may be involved in macrovesicular endocytosis. The original aim of this study was to test for the presence of macroendocytosis in xylotrophic basidiomycetes using time-lapse and Z-stacks fluorescent microscopic technologies. However, the results were unexpected since most of the membrane structures labeled by the endocytic tracer (FM4-64 analog) are various types of plasma membrane macroinvaginations and not any endomembranes. All of these macroinvaginations have a tubular or lamellar genesis. Moreover, under specific conditions of a microscopic preparation, the diameter of the tubes forming the macroinvaginations increases with the time of the sample observation. In addition, the morphology and successive formation of the macroinvaginations mimic the endocytic pathway; these invaginations can easily be mistaken for endocytic vesicles, endosomes, and vacuole-lysosomes. The paper analyzes the various macroinvagination types, suggests their biological functions, and discusses some features of fungal endocytosis. This study is a next step toward understanding complex fungal physiology and is a presentation of a new intracellular tubular system in wood-decaying fungi
Karyological evidence for meiosis in the three different types of life cycles existing in Agaricus bisporus
International audienceIn Agaricus bisporus all cytological studies performed until now concerned the pseudohomothallic and bisporic var. bisporus. In the past 12 y two tetrasporic varieties have been described, the heterothallic var. burnettii and the homothallic var. eurotetrasporus. Our aim was to compare the behavior of the nuclei in the vegetative and reproductive cells of the three varieties with light microscopy (Feulgen and DAPI staining) and transmission electron microscopy. Most of the vegetative cells contained 3-5 nuclei in the three varieties. Nuclear migrations through the septum were detected. In the basidia relative locations of nuclei and vacuoles, meiotic spindle alignments, relative content of nuclear DNA and synaptonemal complexes were measured or observed. From the observation of numerous asynchronous second division of meiosis within basidia of var. bisporus and var. burnettii a new hypothesis emerges to explain the nonrandom distribution of the four meiotic products in the two spores of the bisporic basidia. Karyogamy and meiosis similarly occurred in the three varieties. In the case of A. bisporus var. eurotetrasporus this implies that the reproductive mode is sexual and therefore homothallic in the strict sense. The three different types of life cycles are described
An unusual sexual stage in the alkalophilic ascomycete Sodiomyces alkalinus
Exploring life cycles of fungi is insightful for understanding their basic biology and can highlight their ecology. Here, we dissected the sexual and asexual life cycles of the obligate alkalophilic ascomycete Sodiomyces alkalinus that thrives at extremely high pH of soda lakes. S. alkalinus develops acremonium-type asexual sporulation, commonly found in ascomycetous fungi. However, the sexual stage was unusual, featuring very early lysis of asci which release young ascospores inside a fruit body long before its maturation. In a young fruit body, a slimy matrix which originates from the combined epiplasm of asci and united cytoplasm of the pseudoparenchymal cells, surrounds pooled maturing ascospores. Upon maturity, the ascospores are forcibly released through a crack in the fruit body, presumably due to an increased turgor pressure. These features of the sexual stage development resemble the ones found in unrelated marine fungi, indicating convergent evolution of the trait. We hypothesise these developmental features of S. alkalinus to be adaptive in the conditions of periodically inundated rims of soda lakes where the fungus thrives.</p
Membrane lipids and soluble sugars dynamics of the alkaliphilic fungus Sodiomyces tronii in response to ambient pH
Alkaliphily, the ability of an organism to thrive optimally at high ambient pH, has been well-documented in several lineages: archaea, bacteria and fungi. The molecular mechanics of such adaptation has been extensively addressed in alkaliphilic bacteria and alkalitolerant fungi. In this study, we consider an additional property that may have enabled fungi to prosper at alkaline pH: altered contents of membrane lipids and cytoprotectant molecules. In the alkaliphilic Sodiomyces tronii, we showed that at its optimal growth pH 9.2, the fungus accumulates abundant cytosolic trehalose (4–10% dry weight) and phosphatidic acids in the membrane lipids, properties not normally observed in neutrophilic species. At a very high pH 10.2, the major carbohydrate, glucose, was rapidly substituted by mannitol and arabitol. Conversely, lowering the pH to 5.4–7.0 had major implications both on the content of carbohydrates and membrane lipids. It was shown that trehalose dominated at pH 5.4. Fractions of sphingolipids and sterols of plasma membranes rapidly elevated possibly indicating the formation of membrane structures called rafts. Overall, our results reveals complex dynamics of the contents of membrane lipids and cytoplasmic sugars in alkaliphilic S. tronii, suggesting their adaptive functionality against pH stress