12 research outputs found

    Synergic combinations of antimicrobial peptides (AMPs) against biofilms of methicillin-resistant Staphylococcus aureus (MRSA) on polystyrene and medical devices.

    Get PDF
    Abstract Objectives Antimicrobial research is being focused to look for more effective therapeutics against antibiotic-resistant infections caused by methicillin-resistantStaphylococcus aureus (MRSA). In this direction, antimicrobial peptides (AMP) appears a promising solution. The aim of the present study was to investigate the potential activity of Temporin A, Citropin 1.1, CA(1–7)M(2–9)NH2 and Pal-KGK-NH2 in synergic activity against MRSA biofilms developed on polystyrene surface (PSS) and central venous catheter (CVC). Methods The research was subdivided into distinct phases to assess the ability of AMPs to inhibit biofilm formation, to identify a possible synergy between AMPs, and to eradicate preformed biofilms on PSS and CVC using AMPs alone or in combination. Results The activity of the AMPs was particularly evident in the inhibition of biofilm formation on PSS and on CVC, while the eradication of preformed biofilms was more difficult and was reached only after 24 h of contact. The synergic activity of AMPs combinations, selected by their FICI, has led to an improvement in the performance of all the molecules in the removal of different biofilms. Conclusions Overall, AMPs could represent the next generation of antimicrobial agents for a prophylactic or therapeutic tool to control biofilm of antibiotic-resistant and/or biofilm-associated infections on different medical devices

    Antimicrobial Activity of Different Antimicrobial Peptides (AMPs) Against Clinical Methicillin-resistant Staphylococcus aureus (MRSA)

    No full text
    Background: Antimicrobial research is being focused to look for more effective therapeutics against antibiotic-resistant infections caused by methicillin-resistant Staphylococcus aureus (MRSA). In this direction, antimicrobial peptides (AMP) appear as promising tool. Objectives: This study evaluated the antimicrobial activity of different AMPs (Citropin 1.1, Temporin A, Pexiganan, CA(1–7)M(2–9)NH2, Pal-KGK-NH2, Pal-KKKK-NH2, LL-37) against human MRSA clinical isolates. Methods: The Minimum Inhibitory Concentration (MIC) was assessed for each AMP; then, the most active ones (Citropin 1.1, Temporin A, CA(1–7)M(2–9)NH2 and Pal-KGK-NH2) were tested against selected MRSA strains by time-kill studies. Results: The lowest MIC value was observed for Pal-KGK-NH2 (1 µg/ml), followed by Temporin A (4- 16 µg/ml), CA(1–7)M(2–9)NH2 (8-16 µg/ml) and Citropin 1.1 (16-64 µg/ml), while higher MICs were evidenced for LL-37, Pexiganan and Pal-KKKK-NH2 (> 128 µg/ml). In time-kill experiments, Citropin 1.1 and CA(1-7)M(2-9)NH2 showed a relatively high percentage of growth inhibition (>30 %) for all the tested MRSA clinical isolates, with a dose-dependent activity resulting in the highest percentage of bacterial growth inhibition (89.39%) at 2MIC concentration. Conclusion: Overall, our data demonstrated the potential of some AMPs against MRSA isolates, such as Citropin 1.1 and CA(1-7)M(2-9)NH2, that represents a promising area of development for different clinical applications

    Synergistic effect of antimicrobial peptide LL-37 and colistin combination against multidrug-resistant Escherichia coli isolates

    No full text
    Overview: The global spread of antibiotic resistance represents a serious threat for public health. Aim: We evaluated the efficacy of the antimicrobial peptide LL-37 as antimicrobial agent against multidrug-resistant Escherichia coli. Results: LL-37 showed good activity against mcr-1 carrying, extended spectrum beta-lactamase- and carbapenemase-producing E. coli (minimum inhibitory concentration, MIC, from 16 to 64mg/l). Checkerboard assays demonstrated synergistic effect of LL-37/colistin combination against all tested strains, further confirmed by time-kill and post antibiotic effect assays. MIC and sub-MIC concentrations of LL-37 were able to reduce biofilm formation. Conclusion: Our preliminary data indicated that LL-37/colistin combination was effective against multidrug resistant E. coli strains and suggested a new possible clinical application

    Efficacy of the Combination of Tachyplesin III and Clarithromycin in Rat Models of Escherichia coli Sepsisâ–¿

    No full text
    We investigated the efficacy of tachyplesin III and clarithromycin in two experimental rat models of severe gram-negative bacterial infections. Adult male Wistar rats were given either (i) an intraperitoneal injection of 1 mg/kg Escherichia coli 0111:B4 lipopolysaccharide or (ii) 2 × 1010 CFU of E. coli ATCC 25922. For each model, the animals received isotonic sodium chloride solution, 1 mg/kg tachyplesin III, 50 mg/kg clarithromycin, or 1 mg/kg tachyplesin III combined with 50 mg/kg clarithromycin intraperitoneally. Lethality, bacterial growth in the blood and peritoneum, and the concentrations of endotoxin and tumor necrosis factor alpha (TNF-α) in plasma were evaluated. All the compounds reduced the lethality of the infections compared to that for the controls. Tachyplesin III exerted a strong antimicrobial activity and achieved a significant reduction of endotoxin and TNF-α concentrations in plasma compared to those of the control and clarithromycin-treated groups. Clarithromycin exhibited no antimicrobial activity but had a good impact on endotoxin and TNF-α plasma concentrations. A combination of tachyplesin III and clarithromycin resulted in significant reductions in bacterial counts and proved to be the most-effective treatment in reducing all variables measured

    In vitro activity of Protegrin-1, alone and in combination with clinically useful antibiotics, against Acinetobacter baumannii strains isolated from surgical wounds

    No full text
    In the past few years the increasing incidence of hospital infections with Acinetobacter baumannii, especially in immunocompromised patients, and its proneness to develop multidrug resistance have been raising considerable concern. This study examines the antimicrobial and antibiofilm activity of protegrin 1 (PG-1), an antimicrobial peptide from porcine leukocytes, against A. baumannii strains isolated from surgical wounds. PG-1 was tested both alone and combined with the antibiotics commonly used in clinical settings. Its antimicrobial activity was evaluated by determination of minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC), checkerboard assays, and time-kill experiments. Its effects on biofilm inhibition/eradication were tested with crystal violet staining. The strains were grown in subinhibitory or increasing PG-1 concentrations to test the development of resistance. Mammalian cell toxicity was tested by XTT assays. PG-1 MICs and MBCs ranged from 2 to 8 µg/ml. PG-1 was most active and demonstrated a synergistic interaction with colistin, a last resort antibiotic. Interestingly, antagonism was never observed. In time-kill experiments, incubation with 2 × MIC for 30 min suppressed all viable cells. PG-1 did not select resistant strains and showed a limited effect on cell viability, but it did exert a strong activity against multidrug-resistant A. baumannii. In contrast, in our experimental conditions it had no effect on biofilm inhibition/eradication. PG-1 thus seems to be a promising antimicrobial agent against multidrug-resistant Gram-negative infections

    In Vitro Activity of Novel Lipopeptides against Triazole-Resistant Aspergillus fumigatus

    No full text
    Aspergillosis, which is mainly sustained by Aspergillus fumigatus, includes a broad spectrum of diseases. They are usually severe in patients with co-morbidities. The first-line therapy includes triazoles, for which an increasing incidence of drug resistance has been lately described. As a consequence of this, the need for new and alternative antifungal molecules is absolutely necessary. As peptides represent promising antimicrobial molecules, two lipopeptides (C14-NleRR-NH(2), C14-WRR-NH(2)) were tested to assess the antifungal activity against azole-resistant A. fumigatus. Antifungal activity was evaluated by determination of minimum inhibitory concentrations (MICs), time–kill curves, XTT assay, optical microscopy, and checkerboard combination with isavuconazole. Both lipopeptides showed antifungal activity, with MICs ranging from 8 mg/L to 16 mg/L, and a dose-dependent effect was confirmed by both time–kill curves and XTT assays. Microscopy showed that hyphae growth was hampered at concentrations equal to or higher than MICs. The rising antifungal resistance highlights the usefulness of novel compounds to treat severe fungal infections. Although further studies assessing the activity of lipopeptides are necessary, these molecules could be effective antifungal alternatives that overcome the current resistances

    Effect of omiganan on colonic anastomosis healing in a rat model of peritonitis

    No full text
    Background: This study investigates the effects of the antimicrobial cationic peptide omiganan - alone and combined with the antibiotic imipenem - on colonic anastomosis healing in presence of intraperitoneal sepsis induced in a rodent model of cecal ligation and puncture (CLP). Methods: Forty male Wistar rats were divided into 5 groups of 8 animals. Group 1 (control group) underwent laparotomy and cecal mobilization and the next day received left colon anastomosis. In group 2 (CLP without treatment), group 3 (CLP + imipenem), group 4 (CLP + omiganan), and group 5 (CLP + omiganan + imipenem), the left colon anastomosis was performed the day after CLP. Imipenem and omiganan were administered by intraperitoneal injection immediately before anastomosis construction and subsequently at 24 h intervals until the 7th postoperative day, when rats were sacrificed. Anastomotic bursting pressure was measured in situ. Tissue samples were collected for determination of hydroxyproline content and histological characteristics. Results: Only rats receiving omiganan + imipenem displayed re-epithelialization, reduced neovascularization of granulation tissue, and a bursting pressure that was similar to that of controls. Omiganan - alone and combined with imipenem - was associated with a better control of inflammatory parameters than imipenem alone. In addition omiganan, like imipenem, counteracted the collagen depletion typical of sepsis. Conclusions: This experimental study demonstrates the efficacy of the new antimicrobial agent omiganan, alone and in combination with imipenem, in delaying the effects of intraperitoneal sepsis on colonic anastomosis healing and provides evidence of the value of omiganan as a therapeutic agent
    corecore