53 research outputs found

    A Reduced Astrocyte Response to β-Amyloid Plaques in the Ageing Brain Associates with Cognitive Impairment

    Get PDF
    Aims β-amyloid (Aβ) plaques are a key feature of Alzheimer’s disease pathology but correlate poorly with dementia. They are associated with astrocytes which may modulate the effect of Aβ-deposition on the neuropil. This study characterised the astrocyte response to Aβ plaque subtypes, and investigated their association with cognitive impairment. Methods Aβ plaque subtypes were identified in the cingulate gyrus using dual labelling immunohistochemistry to Aβ and GFAP+ astrocytes, and quantitated in two cortical areas: the area of densest plaque burden and the deep cortex near the white matter border (layer VI). Three subtypes were defined for both diffuse and compact plaques (also known as classical or core-plaques): Aβ plaque with (1) no associated astrocytes, (2) focal astrogliosis or (3) circumferential astrogliosis. Results In the area of densest burden, diffuse plaques with no astrogliosis (β = -0.05, p = 0.001) and with focal astrogliosis (β = -0.27, p = 0.009) significantly associated with lower MMSE scores when controlling for sex and age at death. In the deep cortex (layer VI), both diffuse and compact plaques without astrogliosis associated with lower MMSE scores (β = -0.15, p = 0.017 and β = -0.81, p = 0.03, respectively). Diffuse plaques with no astrogliosis in layer VI related to dementia status (OR = 1.05, p = 0.025). In the area of densest burden, diffuse plaques with no astrogliosis or with focal astrogliosis associated with increasing Braak stage (β = 0.01, p<0.001 and β = 0.07, p<0.001, respectively), and ApoEε4 genotype (OR = 1.02, p = 0.001 and OR = 1.10, p = 0.016, respectively). In layer VI all plaque subtypes associated with Braak stage, and compact amyloid plaques with little and no associated astrogliosis associated with ApoEε4 genotype (OR = 1.50, p = 0.014 and OR = 0.10, p = 0.003, respectively). Conclusions Reactive astrocytes in close proximity to either diffuse or compact plaques may have a neuroprotective role in the ageing brain, and possession of at least one copy of the ApoEε4 allele impacts the astroglial response to Aβ plaques

    Major depressive disorder is associated with changes in a cluster of serum and urine biomarkers

    No full text
    \u3cp\u3eMajor Depressive Disorder (MDD) is a heterogeneous disorder with a considerable symptomatic overlap with other psychiatric and somatic disorders. This study aims at providing evidence for association of a set of serum and urine biomarkers with MDD. We analyzed urine and serum samples of 40 MDD patients and 47 age- and sex-matched controls using 40 potential MDD biomarkers (21 serum biomarkers and 19 urine biomarkers). All participants were of Caucasian origin. We developed an algorithm to combine the heterogeneity at biomarker level. This method enabled the identification of correlating biomarkers based on differences in variation and distribution between groups, combined the outcome of the selected biomarkers, and calculated depression probability scores (the “bio depression score”). Phenotype permutation analysis showed a significant discrimination between MDD and euthymic (control) subjects for biomarkers in urine (P &lt;.001), in serum (P =.02) and in the combined serum plus urine result (P &lt;.001). Based on this algorithm, a combination of 8 urine biomarkers and 9 serum biomarkers were identified to correlate with MDD, enabling an area under the curve (AUC) of 0.955 in a Receiver Operating Characteristic (ROC) analysis. Selection of either urine biomarkers or serum biomarkers resulted in AUC values of 0.907 and 0.853, respectively. Internal cross-validation (5-fold) confirmed the association of this set of biomarkers with MDD.\u3c/p\u3
    • …
    corecore