1,596 research outputs found

    Renormalization and additional degrees of freedom within the chiral effective theory for spin-1 resonances

    Full text link
    We study in detail various aspects of the renormalization of the spin-1 resonance propagator in the effective field theory framework. First, we briefly review the formalisms for the description of spin-1 resonances in the path integral formulation with the stress on the issue of propagating degrees of freedom. Then we calculate the one-loop 1-- meson self-energy within the Resonance chiral theory in the chiral limit using different methods for the description of spin-one particles, namely the Proca field, antisymmetric tensor field and the first order formalisms. We discuss in detail technical aspects of the renormalization procedure which are inherent to the power-counting non-renormalizable theory and give a formal prescription for the organization of both the counterterms and one-particle irreducible graphs. We also construct the corresponding propagators and investigate their properties. We show that the additional poles corresponding to the additional one-particle states are generated by loop corrections, some of which are negative norm ghosts or tachyons. We count the number of such additional poles and briefly discuss their physical meaning.Comment: 65 pages, 12 figure

    Insufficient neutralization in testing a chlorhexidine-containing ethanol-based hand rub can result in a false positive efficacy assessment

    Get PDF
    BACKGROUND: Effective neutralization in testing hand hygiene preparations is considered to be a crucial element to ensure validity of the test results, especially with the difficulty to neutralize chlorhexidine gluconate. Aim of the study was to measure the effect of chemical neutralization under practical test conditions according to EN 1500. METHODS: We have investigated two ethanol-based hand rubs (product A, based on 61% ethanol and 1% chlorhexidine gluconate; product B, based on 85% ethanol). The efficacy of products (application of 3 ml for 30 s) was compared to 2-propanol 60% (v/v) (two 3 ml rubs of 30 s each) on hands artificially contaminated with Escherichia coli using a cross-over design with 15 volunteers. Pre-values were obtained by rubbing fingertips for 1 minute in liquid broth. Post-values were determined by sampling immediately after disinfection in liquid broth with and without neutralizers (0.5% lecithin, 4% polysorbate 20). RESULTS: The neutralizers were found to be effective and non-toxic. Without neutralization in the sampling fluid, the reference disinfection reduced the test bacteria by 3.7 log(10), product B by 3.3 log(10 )and product A by 4.8 log(10 )(P = 0.001; ANOVA). With neutralization the reference disinfection reduced the test bacteria by 3.5 log(10), product B by 3.3 log(10 )and product A by 2.7 log(10 )(P = 0.011; ANOVA). In comparison to the reference treatment Product B lead to a lower mean reduction than the reference disinfection but the difference was not significant (P > 0.1; Wilcoxon-Wilcox test). Without neutralizing agents in the sampling fluid, product A yielded a significantly higher reduction of test bacteria (4.8; P = 0.02) as compared to the situation with neutralizing agents (2.7; P = 0.033). CONCLUSION: The crucial step of neutralization lies in the sampling fluid itself in order to stop any residual bacteriostatic or bactericidal activity immediately after the application of the preparation, especially with chlorhexidine gluconate-containing preparations. This is particularly important at short application times such as the 30 s

    Plumbophyllite, a new species from the Blue Bell claims near Baker, San Bernardino County, California

    Get PDF
    The new mineral plumbophyllite, Pb2Si4O10·H2O, orthorhombic with space group Pbcn and cell parameters a = 13.2083(4), b = 9.7832(3), c = 8.6545(2) Å, V = 1118.33(5) Å^3, and Z = 4. It occurs as colorless to pale blue prismatic crystals to 3 mm, with wedge-shaped terminations at the Blue Bell claims, about 11 km west of Baker, San Bernardino County, California. It is found in narrow veins in a highly siliceous hornfels in association with cerussite, chrysocolla, fluorite, goethite, gypsum, mimetite, opal, plumbotsumite, quartz, sepiolite, and wulfenite. The streak is white, the luster is vitreous, the Mohs hardness is about 5, and there is one perfect cleavage, {100}. The measured density is 3.96(5) g/cm^3 and the calculated density is 3.940 g/cm^3. Optical properties (589 nm): biaxial (+), {alpha} = 1.674(2), β = 1.684(2), {gamma} = 1.708(2), 2V = 66(2)°, dispersion r > v (strong); X = b, Y = c, Z = a. Electron microprobe analysis provided PbO 60.25, CuO 0.23, SiO_2 36.22 wt%, and CHN analysis provided H_2O 3.29 wt% for a total of 99.99 wt%. Powder IR spectroscopy confirmed the presence of H_2O and single-crystal IR spectroscopy indicated the H_2O to be oriented perpendicular to the b axis. Raman spectra were also obtained. The strongest powder X-ray diffraction lines are [d (hkl) I]: 7.88(110)97, 6.63(200)35, 4.90(020)38, 3.623(202)100, 3.166(130)45, 2.938(312/411/222)57, 2.555(132/213)51, and 2.243(521/332)50. The atomic structure (R1 = 2.04%) consists of undulating sheets of silicate tetrahedra between which are located Pb atoms and channels containing H_2O (and Pb^(2+) lone-pair electrons). The silicate sheets can be described as consisting of zigzag pyroxene-like (SiO_3)_n chains joined laterally into sheets with the unshared tetrahedral apices in successive chains pointed alternately up and down, a configuration also found in pentagonite

    Nature of the Peierls- to Mott-insulator transition in 1D

    Full text link
    In order to clarify the physics of the crossover from a Peierls band insulator to a correlated Mott-Hubbard insulator, we analyze ground-state and spectral properties of the one-dimensional half-filled Holstein-Hubbard model using quasi-exact numerical techniques. In the adiabatic limit the transition is connected to the band to Mott insulator transition of the ionic Hubbard model. Depending on the strengths of the electron-phonon coupling and the Hubbard interaction the transition is either first order or evolves continuously across an intermediate phase with finite spin, charge, and optical excitation gaps.Comment: 6 pages, 7 figures to appear in EPJ

    Disorder-Induced Static Antiferromagnetism in Cuprate Superconductors

    Full text link
    Using model calculations of a disordered d-wave superconductor with on-site Hubbard repulsion, we show how dopant disorder can stabilize novel states with antiferromagnetic order. We find that the critical strength of correlations or impurity potential necessary to create an ordered magnetic state in the presence of finite disorder is reduced compared to that required to create a single isolated magnetic droplet. This may explain why in cuprates like LSCO low-energy probes have identified a static magnetic component which persists well into the superconducting state, whereas in cleaner systems like YBCO it is absent or minimal. Finally we address the case of nominally clean LSCO samples at optimal doping, where such ordered magnetic moments are absent, but where they can be induced by small concentrations of strong scatterers.Comment: 4 pages, 5 figure
    • …
    corecore