2,986 research outputs found
Modally Resolved Fabry-Perot Experiment with Semiconductor Waveguides
Based on the interaction between different spatial modes, semiconductor
Bragg-reflection waveguides provide a highly functional platform for non-linear
optics. Therefore, the control and engineering of the properties of each
spatial mode is essential. Despite the multimodeness of our waveguide, the
well-established Fabry-Perot technique for recording fringes in the optical
transmission spectrum can successfully be employed for a detailed linear
optical characterization when combined with Fourier analysis. A prerequisite
for the modal sensitivity is a finely resolved transmission spectrum that is
recorded over a broad frequency band. Our results highlight how the features of
different spatial modes, such as their loss characteristics and dispersion
properties, can be separated from each other allowing their comparison. The
mode-resolved measurements are important for optimizing the performance of such
multimode waveguides by tailoring the properties of their spatial modes.Comment: 8 pages, 7 figure
Infrared Emission by Dust Around lambda Bootis Stars: Debris Disks or Thermally Emitting Nebulae?
We present a model that describes stellar infrared excesses due to heating of
the interstellar (IS) dust by a hot star passing through a diffuse IS cloud.
This model is applied to six lambda Bootis stars with infrared excesses.
Plausible values for the IS medium (ISM) density and relative velocity between
the cloud and the star yield fits to the excess emission. This result is
consistent with the diffusion/accretion hypothesis that lambda Bootis stars (A-
to F-type stars with large underabundances of Fe-peak elements) owe their
characteristics to interactions with the ISM. This proposal invokes radiation
pressure from the star to repel the IS dust and excavate a paraboloidal dust
cavity in the IS cloud, while the metal-poor gas is accreted onto the stellar
photosphere. However, the measurements of the infrared excesses can also be fit
by planetary debris disk models. A more detailed consideration of the
conditions to produce lambda Bootis characteristics indicates that the majority
of infrared-excess stars within the Local Bubble probably have debris disks.
Nevertheless, more distant stars may often have excesses due to heating of
interstellar material such as in our model.Comment: 10 pages, 5 figures, 4 tables, accepted by ApJ, emulateap
Verification of band offsets and electron effective masses in GaAsN/GaAs quantum wells : Spectroscopic experiment versus 10-band k.p modeling
Optical transitions in GaAs1-xNx/GaAs quantum wells (QWs) have been probed by two complementary techniques, modulation spectroscopy in a form of photoreflectance and surface photovoltage spectroscopy. Transition energies in QWs of various widths and N contents have been compared with the results of band structure calculations based on the 10-band k.p Hamiltonian. Due to the observation of higher order transitions in the measured spectra, the band gap discontinuities at the GaAsN/GaAs interface and the electron effective masses could be determined, both treated as semi-free parameters to get the best matching between the theoretical and experimental energies. We have obtained the chemical conduction band offset values of 86% for x = 1.2% and 83% for x = 2.2%, respectively. For these determined band offsets, the electron effective masses equal to about 0.09 m(o) in QWs with 1.2% N and 0.15 m(o) for the case of larger N content of 2.2%.Publisher PDFPeer reviewe
Multicritical behavior of two-dimensional anisotropic antiferromagnets in a magnetic field
We study the phase diagram and multicritical behavior of anisotropic
Heisenberg antiferromagnets on a square lattice in the presence of a magnetic
field along the easy axis. We argue that, beside the Ising and XY critical
lines, the phase diagram presents a first-order spin-flop line starting from
T=0, as in the three-dimensional case. By using field theory we show that the
multicritical point where these transition lines meet cannot be O(3) symmetric
and occurs at finite temperature. We also predict how the critical temperature
of the transition lines varies with the magnetic field and the uniaxial
anisotropy in the limit of weak anisotropy.Comment: 21 pages, 8 fig
- …