4 research outputs found

    Rapid design and fielding of four diagnostic technologies in Sierra Leone, Thailand, Peru, and Australia: Successes and challenges faced introducing these biosensors

    No full text
    © 2018 Febrile illnesses are among the most common reasons for visits to hospitals and clinics worldwide. Since fevers can arise from a wide range of diseases, identifying the causative pathogen is essential not only for effective personal treatment but also for early detection of outbreaks. The Defense Threat Reduction Agency (DTRA) tasked a coalition of commercial, academic, and government researchers with moving diagnostic technology concepts from ideation to field use as rapidly as possible using scientifically sound evaluations. DTRA\u27s 24 Month Challenge program examined \u3e30 technologies before fielding four technologies on four continents. \u3e10,000 in field test results were recorded. Here we discuss our tiered evaluation system to assess candidate technologies developed by commercial partners and the process of field testing those technologies at various front-line clinics in Sierra Leone, Thailand, Peru, and Australia. We discuss successes and challenges for introducing two multiplexed lateral flow immunoassay (LFI) tests that detect malaria, dengue fever, melioidosis, and the plague. Additionally we discuss the use of a LFI reader that assisted the interpretation of the assay, communicated results to a data cloud, and greatly facilitated reach-back support. Lastly, we discuss the concurrent field testing of a multiplexed PCR assay on the FilmArray platform, which had an assay pouch specially designed for the 24 Month Challenge. Either standard-of-care or gold-standard testing were run alongside our fielded technologies to benchmark their performance

    Addressing personal protective equipment (PPE) decontamination: Methylene blue and light inactivates severe acute respiratory coronavirus virus 2 (SARS-CoV-2) on N95 respirators and medical masks with maintenance of integrity and fit

    No full text
    OBJECTIVE: The coronavirus disease 2019 (COVID-19) pandemic has resulted in shortages of personal protective equipment (PPE), underscoring the urgent need for simple, efficient, and inexpensive methods to decontaminate masks and respirators exposed to severe acute respiratory coronavirus virus 2 (SARS-CoV-2). We hypothesized that methylene blue (MB) photochemical treatment, which has various clinical applications, could decontaminate PPE contaminated with coronavirus. DESIGN: The 2 arms of the study included (1) PPE inoculation with coronaviruses followed by MB with light (MBL) decontamination treatment and (2) PPE treatment with MBL for 5 cycles of decontamination to determine maintenance of PPE performance. METHODS: MBL treatment was used to inactivate coronaviruses on 3 N95 filtering facepiece respirator (FFR) and 2 medical mask models. We inoculated FFR and medical mask materials with 3 coronaviruses, including SARS-CoV-2, and we treated them with 10 µM MB and exposed them to 50,000 lux of white light or 12,500 lux of red light for 30 minutes. In parallel, integrity was assessed after 5 cycles of decontamination using multiple US and international test methods, and the process was compared with the FDA-authorized vaporized hydrogen peroxide plus ozone (VHP+O) decontamination method. RESULTS: Overall, MBL robustly and consistently inactivated all 3 coronaviruses with 99.8% to \u3e99.9% virus inactivation across all FFRs and medical masks tested. FFR and medical mask integrity was maintained after 5 cycles of MBL treatment, whereas 1 FFR model failed after 5 cycles of VHP+O. CONCLUSIONS: MBL treatment decontaminated respirators and masks by inactivating 3 tested coronaviruses without compromising integrity through 5 cycles of decontamination. MBL decontamination is effective, is low cost, and does not require specialized equipment, making it applicable in low- to high-resource settings

    Rapid design and fielding of four diagnostic technologies in Sierra Leone, Thailand, Peru, and Australia: Successes and challenges faced introducing these biosensors

    No full text
    Febrile illnesses are among the most common reasons for visits to hospitals and clinics worldwide. Since fevers can arise from a wide range of diseases, identifying the causative pathogen is essential not only for effective personal treatment but also for early detection of outbreaks. The Defense Threat Reduction Agency (DTRA) tasked a coalition of commercial, academic, and government researchers with moving diagnostic technology concepts from ideation to field use as rapidly as possible using scientifically sound evaluations. DTRA's 24 Month Challenge program examined >30 technologies before fielding four technologies on four continents. >10,000 in field test results were recorded. Here we discuss our tiered evaluation system to assess candidate technologies developed by commercial partners and the process of field testing those technologies at various front-line clinics in Sierra Leone, Thailand, Peru, and Australia. We discuss successes and challenges for introducing two multiplexed lateral flow immunoassay (LFI) tests that detect malaria, dengue fever, melioidosis, and the plague. Additionally we discuss the use of a LFI reader that assisted the interpretation of the assay, communicated results to a data cloud, and greatly facilitated reach-back support. Lastly, we discuss the concurrent field testing of a multiplexed PCR assay on the FilmArray platform, which had an assay pouch specially designed for the 24 Month Challenge. Either standard-of-care or gold-standard testing were run alongside our fielded technologies to benchmark their performance. Keywords: Diagnostic device, Lateral flow immunoassay, Nested PCR, Field testing, Malaria, Dengue feve

    Addressing personal protective equipment (PPE) decontamination: Methylene blue and light inactivates severe acute respiratory coronavirus virus 2 (SARS-CoV-2) on N95 respirators and medical masks with maintenance of integrity and fit

    No full text
    Objective: The coronavirus disease 2019 (COVID-19) pandemic has resulted in shortages of personal protective equipment (PPE), underscoring the urgent need for simple, efficient, and inexpensive methods to decontaminate masks and respirators exposed to severe acute respiratory coronavirus virus 2 (SARS-CoV-2). We hypothesized that methylene blue (MB) photochemical treatment, which has various clinical applications, could decontaminate PPE contaminated with coronavirus. Design: The 2 arms of the study included (1) PPE inoculation with coronaviruses followed by MB with light (MBL) decontamination treatment and (2) PPE treatment with MBL for 5 cycles of decontamination to determine maintenance of PPE performance. Methods: MBL treatment was used to inactivate coronaviruses on 3 N95 filtering facepiece respirator (FFR) and 2 medical mask models. We inoculated FFR and medical mask materials with 3 coronaviruses, including SARS-CoV-2, and we treated them with 10 mu M MB and exposed them to 50,000 lux of white light or 12,500 lux of red light for 30 minutes. In parallel, integrity was assessed after 5 cycles of decontamination using multiple US and international test methods, and the process was compared with the FDA-authorized vaporized hydrogen peroxide plus ozone (VHP+O-3) decontamination method. Results: Overall, MBL robustly and consistently inactivated all 3 coronaviruses with 99.8% to >99.9% virus inactivation across all FFRs and medical masks tested. FFR and medical mask integrity was maintained after 5 cycles of MBL treatment, whereas 1 FFR model failed after 5 cycles of VHP+O-3. Conclusions: MBL treatment decontaminated respirators and masks by inactivating 3 tested coronaviruses without compromising integrity through 5 cycles of decontamination. MBL decontamination is effective, is low cost, and does not require specialized equipment, making it applicable in low- to high-resource settings
    corecore