18 research outputs found

    An increased understanding of soil organic carbon stocks and changes in non-temperate areas: national and global implications

    No full text
    National and sub-national scale estimates of soil organic carbon (SOC) stocks and changes can provide information land degradation risk, C sequestration possibilities and the potential sustainability of proposed land management plans. Under a GEF co-financed project, `The GEFSOC Modelling SystemÂż was used to determine SOC stocks and projected stock change rates for four case study areas; The Brazilian Amazon, The Indo-Gangetic Plains of India, Kenya and Jordan. Each case study represented soil and vegetation types, climates and land management systems that are under represented globally, in terms of an understanding of land use and land management systems and the effects these systems have on SOC stocks. The stocks and stock change rates produced were based on detailed geo-referenced datasets of soils, climate, land use and management information. These datasets are unique as they bring together national and regional scale data on the main variables determining SOC, for four contrasting non-temperate eco-regions. They are also unique, as they include information on land management practices used in subsistence agriculture in tropical and arid areas. Implications of a greater understanding of SOC stocks and stock change rates in non-temperate areas are considered. Relevance to national land use plans are explored for each of the four case studies, in terms of sustainability, land degradation and greenhouse gas mitigation potential. Ways in which such information will aid the case study countries in fulfilling obligations under the United Nations Conventions on Climate Change, Biodiversity and Land Degradation are also considered. The need for more detailed land management data to improve SOC stock estimates in non-temperate areas is discusse

    The GEFSOC soil carbon modelling system: a tool for conducting regional-scale soil carbon inventories and assessing the impacts of land use change on soil carbon

    No full text
    The GEFSOC soil carbon modelling system was built to provide interdisciplinary teams of scientists, natural resource managers and policy analysts (who have the appropriate computing skills) with the necessary tools to conduct regional-scale soil carbon (C) inventories. It allows users to assess the effects of land use change on soil organic C (SOC) stocks, soil fertility and the potential for soil C sequestration. The tool was developed in conjunction with case-studies of land use and management impacts on SOC in Brazil, Jordan, Kenya and India, which represent a diversity of land use and land management patterns and are countries where sustaining soil organic matter and fertility for food security is an on-going problem. The tool was designed to run using two common desktop computers, connected via a local area network. It utilizes open-source software that is freely available. All new software and user interfaces developed for the tool are available in an open source environment allowing users to examine system details, suggest improvements or write additional modules to interface with the system. The tool incorporates three widely used models for estimating soil C dynamics: (1) the Century ecosystem model; (2) the RothC soil C decomposition model; and (3) the Intergovernmental Panel on Climate Change (IPCC) method for assessing soil C at regional scales. The tool interacts with a Soil and Terrain Digital Database (SOTER) built for the specific country or region the user intends to model. A demonstration of the tool and results from an assessment of land use change in a sample region of North America are presente
    corecore