10 research outputs found

    Influence of storage time on essential oil components in dried hops

    Get PDF
    Hop processors often store fresh hops in silos prior to drying. There has been little knowledge regarding the effect of storage on hops. To investigate the effects on product quality, freshly harvested hop cones were stored for 5 and 24 hr respectively and dried for 210 min at 65°C thereafter. The results obtained from gas chromatography (GC) investigations show an increase in linalool, ß-carophyllen, humulen and geraniol content and decrease in myrcene content based on the period of storage

    Conductance Quantization at zero magnetic field in InSb nanowires

    Full text link
    Ballistic electron transport is a key requirement for existence of a topological phase transition in proximitized InSb nanowires. However, measurements of quantized conductance as direct evidence of ballistic transport have so far been obscured due to the increased chance of backscattering in one dimensional nanowires. We show that by improving the nanowire-metal interface as well as the dielectric environment we can consistently achieve conductance quantization at zero magnetic field. Additionally, studying the sub-band evolution in a rotating magnetic field reveals an orbital degeneracy between the second and third sub-bands for perpendicular fields above 1T

    In-process investigation of the dynamics in drying behavior and quality development of hops using visual and environmental sensors combined with chemometrics

    No full text
    Hops are a key ingredient for beer brewing due to their role in preservation, the creation of foam characteristics, the bitterness and aroma of the beers. Drying significantly impacts on the composition of hops which directly affects the brewing quality of beers. Therefore, it is pivotal to understand the changes during the drying process to optimize the process with the central aim of improving product quality and process performance. Hops of the variety Mandarina Bavaria were dried at 65 °C and 70 °C with an air velocity of 0.35 m/s. Bulk weights investigated were 12, 20 and 40 kg/m2 respectively. Drying times were 105, 135, and 195 and 215 min, respectively. Drying characteristics showed a unique development, very likely due to the distinct physiology of hop cones (spindle, bracteole, bract, lupilin glands). Color changes depended strongly on the bulk weight and resulting bulk thickness (ΔE 9.5 (12 kg), 13 (20 kg), 18 (40 kg)) whilst α and ß acid contents were not affected by the drying conditions (full retention in all cases). The research demonstrated that specific air mass flow is critical for the quality of the final product, as well as the processing time required. Three types of visual sensors were integrated into the system, namely Vis-VNIR hyperspectral and RGB camera, as well as a pyrometer, to facilitate continuous in-process measurement. This enabled the dynamic characterization of the drying behavior of hops. Chemometric investigations into the prediction of moisture and chromatic information, as well as selected chemical components with full and a reduced wavelength set, were conducted. Moisture content prediction was shown to be feasible (r2 = 0.94, RMSE = 0.2) for the test set using 8 wavelengths. CIELAB a* prediction was also seen to be feasible (r2 = 0.75, RMSE = 3.75), alongside CIELAB b* prediction (r2 = 0.52 and RMSE = 2.66). Future work will involve possible ways to improve the current predictive models

    Impact of Process Parameters and Bulk Properties on Quality of Dried Hops

    No full text
    Hops are critical to the brewing industry. In commercial hop drying, a large bulk of hops is dried in multistage kilns for several hours. This affects the drying behavior and alters the amount and chemical composition of the hop oils. To understand these changes, hops of the var. Hallertauer Tradition were dried in bulks of 15, 25 and 35 kg/m² at 60 °C and 0.35 m/s. Additionally, bulks of 25 kg/m² were also dried at 65 °C and 0.45 m/s to assess the effect of change in temperature and velocity, respectively. The results obtained show that bulk weights significantly influence the drying behavior. Classification based on the cone size reveals 45.4% medium cones, 41.2% small cones and 8.6% large cones. The highest ΔE value of 6.3 and specific energy consumption (113,476 kJ/kgH2O) were observed for the 15 kg/m² bulk. Increasing the temperature from 60 °C to 65 °C increased the oil yield losses by about 7% and myrcene losses by 22%. The results obtained show that it is important to define and consider optimum bulk and process parameters, to optimize the hop drying process to improve the process efficiency as well the product quality

    Scripts accompanying the publication "Conductance through a helical state in an indium antimonide nanowire"

    No full text
    Scripts accompanying the publication "Conductance through a helical state in an indium antimonide nanowire" - published in Nature Communcations. The scripts are written in python (.py) and jupyter notebook (.ipynb

    Data and scripts accompanying the publication "Conductance through a helical state in an indium antimonide nanowire"

    No full text
    Data and scripts accompanying the publication "Conductance through a helical state in an indium antimonide nanowire" - published in Nature Communcations

    Formation and electronic properties of InSb nanocrosses

    No full text
    Signatures of Majorana fermions have recently been reported from measurements on hybrid superconductor-semiconductor nanowire devices. Majorana fermions are predicted to obey special quantum statistics, known as non-Abelian statistics. To probe this requires an exchange operation, in which two Majorana fermions are moved around one another, which requires at least a simple network of nanowires. Here, we report on the synthesis and electrical characterization of crosses of InSb nanowires. The InSb wires grow horizontally on flexible vertical stems, allowing nearby wires to meet and merge. In this way, near-planar single-crystalline nanocrosses are created, which can be measured by four electrical contacts. Our transport measurements show that the favourable properties of the InSb nanowire devices-high carrier mobility and the ability to induce superconductivity-are preserved in the cross devices. Our nanocrosses thus represent a promising system for the exchange of Majorana fermions
    corecore