28 research outputs found

    Structure and Stability of the Spinach Aquaporin SoPIP2;1 in Detergent Micelles and Lipid Membranes

    Get PDF
    Background: SoPIP2;1 constitutes one of the major integral proteins in spinach leaf plasma membranes and belongs to the aquaporin family. SoPIP2;1 is a highly permeable and selective water channel that has been successfully overexpressed and purified with high yields. In order to optimize reconstitution of the purified protein into biomimetic systems, we have here for the first time characterized the structural stability of SoPIP2;1. Methodology/Principal Finding: We have characterized the protein structural stability after purification and after reconstitution into detergent micelles and proteoliposomes using circular dichroism and fluorescence spectroscopy techniques. The structure of SoPIP2;1 was analyzed either with the protein solubilized with octyl-beta-D-glucopyranoside (OG) or reconstituted into lipid membranes formed by E. coli lipids, diphytanoylphosphatidylcholine (DPhPC), or reconstituted into lipid membranes formed from mixtures of 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPE), 1-palmitoyl-2-oleoyl-phosphatidylethanolamine (POPE), 1-palmitoyl-2-oleoyl-phosphatidylserine (POPS), and ergosterol. Generally, SoPIP2;1 secondary structure was found to be predominantly a-helical in accordance with crystallographic data. The protein has a high thermal structural stability in detergent solutions, with an irreversible thermal unfolding occurring at a melting temperature of 58 degrees C. Incorporation of the protein into lipid membranes increases the structural stability as evidenced by an increased melting temperature of up to 70 degrees C. Conclusion/Significance: The results of this study provide insights into SoPIP2;1 stability in various host membranes and suggest suitable choices of detergent and lipid composition for reconstitution of SoPIP2;1 into biomimetic membranes for biotechnological applications

    W-band tunable, multi-channel, frequency comb Doppler backscattering diagnostic in the ASDEX-Upgrade tokamak

    No full text
    This article presents the design, implementation, and first data of a uniquely flexible, multi-channel, frequency comb Doppler backscattering diagnostic recently made operational in the ASDEX-Upgrade tokamak 1. It uses a double sideband signal fed into a x6 frequency multiplier to produce a multiple-frequency output spectrum. Seven of these frequencies are simultaneously measured in the receiver via a two-step frequency down-conversion and traditional I/Q demodulation. The frequency comb spectrum is fully tunable to sit anywhere in the W-band. The inter-frequency separation is also uniquely tunable remotely between 0.1 and 6 GHz without any hardware changes. The diagnostic can be operated in both O and X-mode polarizations and at both oblique and normal incidence to the cutoff layer. The time evolution of backscattered signals, in excess of 30 dB, from 7 distinct frequencies sampled simultaneously are presented across an L to H-mode confinement regime transition

    Isolation and properties of a nitrile hydratase from the soil fungus Myrothecium verrucaria that is highly specific for the fertilizer cyanamide and cloning of its gene.

    No full text
    A protein was purified from crude extracts of the soil fungus Myrothecium verrucaria by gel filtration and hydrophobic chromatography to homogeneity; this protein catalyzed the stoichiometric hydration of the fertilizer cyanamide to urea with high substrate specificity. This cyanamide hydratase (urea hydro-lyase; EC 4.2.1.69) contained zinc and consisted of six identical subunits with Mr = 27,700. It was partially sequenced. The protein was detectable only when the fungus was grown on cyanamide as the sole nitrogen source. Genomic DNA from the fungus was cloned, and the gene encoding the enzyme was mapped with an oligonucleotide probe derived from the amino acid sequence within a 25,800-base-pair DNA region. The subunit of the enzyme is encoded by a 795-base-pair DNA sequence containing a 63-base-pair intron. A cDNA clone containing the intronless gene with an open reading frame encoding a sequence of 244 amino acids expressed the enzyme in active form in Escherichia coli with excellent yield
    corecore