14 research outputs found

    Proteasome function shapes innate and adaptive immune responses.

    No full text
    The proteasome system degrades more than 80% of intracellular proteins into small peptides. Accordingly, the proteasome is involved in many essential cellular functions such as protein quality control, transcription, immune responses, cell signaling, and apoptosis. Moreover, degradation products are loaded onto major histocompatibility (MHC) class I molecules to communicate the intracellular protein composition to the immune system. The standard 20S proteasome core complex contains three distinct catalytic active sites that are exchanged upon stimulation with inflammatory cytokines to form the so-called immunoproteasome. Immunoproteasomes are constitutively expressed in immune cells and have different proteolytic activities compared to standard proteasomes. They are rapidly induced in parenchymal cells upon intracellular pathogen infection and are crucial for priming effective CD8+ T cell-mediated immune responses against infected cells. Beyond shaping these adaptive immune reactions, immunoproteasomes also regulate the function of immune cells by degradation of inflammatory and immune mediators. Accordingly, they emerge as novel regulators of innate immune responses. The recently unraveled impairment of immunoproteasome function by environmental challenges and by genetic variations of immunoproteasome genes might represent a currently underestimated risk factor for the development and progression of lung diseases. In particular, immunoproteasome dysfunction will dampen resolution of infections thereby promoting exacerbations, may foster autoimmunity in chronic lung diseases, and possibly contributes to immune evasion of tumor cells. Novel pharmacological tools such as site-specific inhibitors of the immunoproteasome as well as activity-based probes, however, hold promises as novel therapeutic drugs for respiratory diseases and biomarker profiling, respectively

    In-gel proteasome assay to determine the activity, amount, and composition of proteasome complexes from mammalian cells or tissues.

    No full text
    This protocol describes an easy and reliable in-gel proteasome assay to quantify the activity and composition of different proteasome complexes in cells and tissues. The assay works well with limited amounts of total cell protein lysates. Although this assay is optimized specifically for the proteasome chymotrypsin-like activity, it can be expanded to other proteasome activities as well. Using antibodies that detect distinct proteasome subunits or regulators, we can determine the composition and relative quantity of active proteasome complexes. For complete details on the use and execution of this protocol, please refer to Meul et al. (2020)

    Blood immunoproteasome activity is regulated by sex, age and in chronic inflammatory diseases: A first population-based study.

    Get PDF
    Dysfunction of the immunoproteasome has been implicated in cardiovascular and pulmonary diseases. Its potential as a biomarker for predicting disease stages, however, has not been investigated so far and population-based analyses on the impact of sex and age are missing. We here analyzed the activity of all six catalytic sites of the proteasome in isolated peripheral blood mononuclear cells obtained from 873 study participants of the KORA FF4 study using activity-based probes. The activity of the immuno-and standard proteasome correlated clearly with elevated leukocyte counts of study participants. Unexpectedly, we observed a strong sex dimorphism for proteasome activity with significantly lower immunoproteasome activity in women. In aging, almost all catalytic activities of the proteasome were activated in aged women while maintained upon aging in men. We also noted distinct sex-related activation patterns of standard and immunoproteasome active sites in chronic inflammatory diseases such as diabetes, cardiovascular diseases, asthma, or chronic obstructive pulmonary disease as determined by multiple linear regression modeling. Our data thus provides a conceptual framework for future analysis of immunoproteasome function as a bio-marker for chronic inflammatory disease development and progression

    Proteasome activator PA200 regulates myofibroblast differentiation.

    Get PDF
    The proteasome is essential for the selective degradation of most cellular proteins and is fine-tuned according to cellular needs. Proteasome activators serve as building blocks to adjust protein turnover in cell growth and differentiation. Understanding the cellular function of proteasome activation in more detail offers a new strategy for therapeutic targeting of proteasomal protein breakdown in disease. The role of the proteasome activator PA200 in cell function and its regulation in disease is unknown. In this study, we investigated the function of PA200 in myofibroblast differentiation and fibrotic tissue remodeling. PA200 was upregulated in hyperplastic basal cells and myofibroblasts of fibrotic lungs from patients with idiopathic pulmonary fibrosis. Increased expression of PA200 and enhanced formation of PA200-proteasome complexes was also evident in experimental fibrosis of the lung and kidney in vivo and in activated primary human myofibroblasts of the lung in vitro. Transient silencing and overexpression revealed that PA200 functions as a negative regulator of myofibroblast differentiation of human but not mouse cells. Our data thus suggest an unexpected and important role for PA200 in adjusting myofibroblast activation in response to pro-fibrotic stimuli, which fails in idiopathic pulmonary fibrosis

    Dissecting the molecular effects of cigarette smoke on proteasome function.

    No full text
    Proteasome dysfunction is emerging as a novel pathomechanism for the development of chronic obstructive pulmonary disease (COPD), a major leading cause of death in the world. Cigarette smoke, one of the main risk factors for COPD, impairs proteasome function in vitro and in vivo. In the present study, we dissected the molecular changes induced by cigarette smoke on the proteasome in lung epithelial cells and mouse lungs. 26S proteasome pull-down, MS interactome, and stoichiometry analyses indicated that 26S proteasome complexes become instable in cigarette smoke-treated lung epithelial cells as well as in lungs of mice after three day smoke exposure. The interactome of the 26S was clearly altered in mouse lungs upon smoke exposure but not in cells after 24 h of smoke exposure. Using native MS analysis of purified 20S proteasomes, we observed some destabilization of 20S complexes purified from cigarette smoke-exposed cells in the absence of any dominant and inhibitory modification of proteasomal proteins. Taken together, our results suggest that cigarette smoke induces minor but detectable changes in the stability of 20S and 26S proteasome complexes which might contribute to imbalanced proteostasis in a chronic setting as observed in chronic lung diseases associated with cigarette smoking
    corecore