572 research outputs found

    Wigner Measure Propagation and Conical Singularity for General Initial Data

    Full text link
    We study the evolution of Wigner measures of a family of solutions of a Schr\"odinger equation with a scalar potential displaying a conical singularity. Under a genericity assumption, classical trajectories exist and are unique, thus the question of the propagation of Wigner measures along these trajectories becomes relevant. We prove the propagation for general initial data.Comment: 24 pages, 1 figur

    A Nonlinear Adiabatic Theorem for Coherent States

    Full text link
    We consider the propagation of wave packets for a one-dimensional nonlinear Schrodinger equation with a matrix-valued potential, in the semi-classical limit. For an initial coherent state polarized along some eigenvector, we prove that the nonlinear evolution preserves the separation of modes, in a scaling such that nonlinear effects are critical (the envelope equation is nonlinear). The proof relies on a fine geometric analysis of the role of spectral projectors, which is compatible with the treatment of nonlinearities. We also prove a nonlinear superposition principle for these adiabatic wave packets.Comment: 21 pages, no figur

    Continuity of the blow-up profile with respect to initial data and to the blow-up point for a semilinear heat equation

    Get PDF
    International audienceWe consider blow-up solutions for semilinear heat equations with Sobolev subcritical power nonlinearity. Given a blow-up point a^\hat{a}, we have from earlier literature, the asymptotic behavior in similarity variables. Our aim is to discuss the stability of that behavior, with respect to perturbations in the blow-up point and in initial data. Introducing the notion of ``profile order", we show that it is upper semicontinuous, and continuous only at points where it is a local minimum

    Large Interferometer For Exoplanets (LIFE): VIII. Where is the phosphine? Observing exoplanetary PH3 with a space based MIR nulling interferometer

    Full text link
    Phosphine could be a key molecule in the understanding of exotic chemistry happening in (exo)planetary atmospheres. While it has been detected in the Solar System's giant planets, it has not been observed in exoplanets yet. In the exoplanetary context however it has been theorized as a potential biosignature molecule. The goal of our study is to identify which illustrative science cases for PH3 chemistry are observable with a space-based mid-infrared nulling interferometric observatory like the LIFE (Large Interferometer For Exoplanets) concept. We identified a representative set of scenarios for PH3 detections in exoplanetary atmospheres varying over the whole dynamic range of the LIFE mission. We used chemical kinetics and radiative transfer calculations to produce forward models of these informative, prototypical observational cases for LIFEsim, our observation simulator software for LIFE. In a detailed, yet first order approximation it takes a mission like LIFE: (i) about 1h to find phosphine in a warm giant around a G star at 10 pc, (ii) about 10 h in H2 or CO2 dominated temperate super-Earths around M star hosts at 5 pc, (iii) and even in 100h it seems very unlikely that phosphine would be detectable in a Venus-Twin with extreme PH3 concentrations at 5 pc. Phosphine in concentrations previously discussed in the literature is detectable in 2 out of the 3 cases and about an order of magnitude faster than comparable cases with JWST. We show that there is a significant number of objects accessible for these classes of observations. These results will be used to prioritize the parameter range for the next steps with more detailed retrieval simulations. They will also inform timely questions in the early design phase of a mission like LIFE and guide the community by providing easy-to-scale first estimates for a large part of detection space of such a mission.Comment: In press. Accepted for publication in Astrobiology on 02 November 2022. 26 pages, 5 figures and 8 table

    Time-temperature superposition in viscous liquids

    Get PDF
    Dielectric relaxation measurements on supercooled triphenyl phosphite show that at low temperatures time-temperature superposition (TTS) is accurately obeyed for the primary (alpha) relaxation process. Measurements on 6 other molecular liquids close to the calorimetric glass transition indicate that TTS is linked to an ω1/2\omega^{-1/2} high-frequency decay of the alpha loss, while the loss peak width is nonuniversal.Comment: 4 page

    The Transcriptomic Landscape of Prostate Cancer Development and Progression: An Integrative Analysis

    Get PDF
    Next-generation sequencing of primary tumors is now standard for transcriptomic studies, but microarray-based data still constitute the majority of available information on other clinically valuable samples, including archive material. Using prostate cancer (PC) as a model, we developed a robust analytical framework to integrate data across different technical platforms and disease subtypes to connect distinct disease stages and reveal potentially relevant genes not identifiable from single studies alone. We reconstructed the molecular profile of PC to yield the first comprehensive insight into its development, by tracking changes in mRNA levels from normal prostate to high-grade prostatic intraepithelial neoplasia, and metastatic disease. A total of nine previously unreported stage-specific candidate genes with prognostic significance were also found. Here, we integrate gene expression data from disparate sample types, disease stages and technical platforms into one coherent whole, to give a global view of the expression changes associated with the development and progression of PC from normal tissue through to metastatic disease. Summary and individual data are available online at the Prostate Integrative Expression Database (PIXdb), a user-friendly interface designed for clinicians and laboratory researchers to facilitate translational research

    The Transcriptomic Landscape of Prostate Cancer Development and Progression: An Integrative Analysis

    Get PDF
    Next-generation sequencing of primary tumors is now standard for transcriptomic studies, but microarray-based data still constitute the majority of available information on other clinically valuable samples, including archive material. Using prostate cancer (PC) as a model, we developed a robust analytical framework to integrate data across different technical platforms and disease subtypes to connect distinct disease stages and reveal potentially relevant genes not identifiable from single studies alone. We reconstructed the molecular profile of PC to yield the first comprehensive insight into its development, by tracking changes in mRNA levels from normal prostate to high-grade prostatic intraepithelial neoplasia, and metastatic disease. A total of nine previously unreported stage-specific candidate genes with prognostic significance were also found. Here, we integrate gene expression data from disparate sample types, disease stages and technical platforms into one coherent whole, to give a global view of the expression changes associated with the development and progression of PC from normal tissue through to metastatic disease. Summary and individual data are available online at the Prostate Integrative Expression Database (PIXdb), a user-friendly interface designed for clinicians and laboratory researchers to facilitate translational research

    Sub-microsecond correlations in photoluminescence from InAs quantum dots

    Full text link
    Photon correlation measurements reveal memory effects in the optical emission of single InAs quantum dots with timescales from 10 to 800 ns. With above-band optical excitation, a long-timescale negative correlation (antibunching) is observed, while with quasi-resonant excitation, a positive correlation (blinking) is observed. A simple model based on long-lived charged states is presented that approximately explains the observed behavior, providing insight into the excitation process. Such memory effects can limit the internal efficiency of light emitters based on single quantum dots, and could also be problematic for proposed quantum-computation schemes.Comment: 8 pages, 8 figure

    Bilateral cystoid macular edema following docetaxel chemotherapy in a patient with retinitis pigmentosa: a case report.

    Get PDF
    BACKGROUND: Docetaxel is a chemotherapeutic agent of the taxane class of drugs for the treatment of breast cancer. We present a female patient who noted decreased vision after docetaxel treatment. CASE PRESENTATION: A 45-year-old female patient received docetaxel treatment after resection of a breast carcinoma. Funduscopy and optical coherence tomography (OCT) showed cystoid macular edema on both eyes. Dilated funduscopy also showed bone spicule-like pigmented deposits, typical for retinitis pigmentosa. Besides the fundus appearance restricted peripheral vision and scotopic electroretinogram confirmed the diagnosis of retinitis pigmentosa. Chemotherapy was discontinued following a consulation with the oncologist of the patient. After five weeks, visual acuity improved significantly along with decrease of retinal thickness measured by OCT. CONCLUSION: Docetaxel may cause ocular adverse effects such as cystoid macular edema. Ophthalmological examination is warranted for patients with visual complaints during docetaxel chemotherapy
    corecore