825 research outputs found

    Metabolic characterization of directly reprogrammed renal tubular epithelial cells (iRECs)

    Get PDF
    Fibroblasts can be directly reprogrammed to induced renal tubular epithelial cells (iRECs) using four transcription factors. These engineered cells may be used for disease modeling, cell replacement therapy or drug and toxicity testing. Direct reprogramming induces drastic changes in the transcriptional landscape, protein expression, morphological and functional properties of cells. However, how the metabolome is changed by reprogramming and to what degree it resembles the target cell type remains unknown. Using untargeted gas chromatography-mass spectrometry (GC-MS) and targeted liquid chromatography-MS, we characterized the metabolome of mouse embryonic fibroblasts (MEFs), iRECs, mIMCD-3 cells, and whole kidneys. Metabolic fingerprinting can distinguish each cell type reliably, revealing iRECs are most similar to mIMCD-3 cells and clearly separate from MEFs used for reprogramming. Treatment with the cytotoxic drug cisplatin induced typical changes in the metabolic profile of iRECs commonly occurring in acute renal injury. Interestingly, metabolites in the medium of iRECs, but not of mIMCD-3 cells or fibroblast could distinguish treated and non-treated cells by cluster analysis. In conclusion, direct reprogramming of fibroblasts into renal tubular epithelial cells strongly influences the metabolome of engineered cells, suggesting that metabolic profiling may aid in establishing iRECs as in vitro models for nephrotoxicity testing in the future

    Treating clinical mastitis in dairy cows with essential oils

    Get PDF
    Clinical mastitis is the main concern in dairy farming today, but there are very few drugs that are compatible with organic specifications. Our study was conducted in order to evaluate the therapeutic efficiency of the intramammary infusion of three essential oils, Thymus vulgaris, Rosmarinus verbenone and Laurus nobilis. Fifty-five cases of mastitis were treated with 10 ml of a mixture of the three oils (1.5% each in sunflower oil). Forty-five others were treated with 10 ml of a mixture of Thymus vulgaris and Rosmarinus verbenone (6% of each in sunflower oil or in water). The recovery rate was only 40%, which is deemed unsatisfactory

    Time-temperature superposition in viscous liquids

    Get PDF
    Dielectric relaxation measurements on supercooled triphenyl phosphite show that at low temperatures time-temperature superposition (TTS) is accurately obeyed for the primary (alpha) relaxation process. Measurements on 6 other molecular liquids close to the calorimetric glass transition indicate that TTS is linked to an ω1/2\omega^{-1/2} high-frequency decay of the alpha loss, while the loss peak width is nonuniversal.Comment: 4 page

    Unconventional motional narrowing in the optical spectrum of a semiconductor quantum dot

    Get PDF
    Motional narrowing refers to the striking phenomenon where the resonance line of a system coupled to a reservoir becomes narrower when increasing the reservoir fluctuation. A textbook example is found in nuclear magnetic resonance, where the fluctuating local magnetic fields created by randomly oriented nuclear spins are averaged when the motion of the nuclei is thermally activated. The existence of a motional narrowing effect in the optical response of semiconductor quantum dots remains so far unexplored. This effect may be important in this instance since the decoherence dynamics is a central issue for the implementation of quantum information processing based on quantum dots. Here we report on the experimental evidence of motional narrowing in the optical spectrum of a semiconductor quantum dot broadened by the spectral diffusion phenomenon. Surprisingly, motional narrowing is achieved when decreasing incident power or temperature, in contrast with the standard phenomenology observed for nuclear magnetic resonance

    Energy landscape - a key concept for the dynamics of glasses and liquids

    Full text link
    There is a growing belief that the mode coupling theory is the proper microscopic theory for the dynamics of the undercooled liquid above a critical temperature T_c. In addition, there is some evidence that the system leaves the saddlepoints of the energy landscape to settle in the valleys at this critical temperature. Finally, there is a microscopic theory for the entropy at the calorimetric glass transition T_g by Mezard and Parisi, which allows to calculate the Kauzmann temperature from the atomic pair potentials. The dynamics of the frozen glass phase is at present limited to phenomenological models. In the spirit of the energy landscape concept, one considers an ensemble of independent asymmetric double-well potentials with a wide distribution of barrier heights and asymmetries (ADWP or Gilroy-Phillips model). The model gives an excellent description of the relaxation of glasses up to about T_g/4. Above this temperature, the interaction between different relaxation centers begins to play a role. One can show that the interaction reduces the number of relaxation centers needed to bring the shear modulus down to zero by a factor of three.Comment: Contribution to the III Workshop on Nonequilibrium Phenomena in Supercooled Fluids, Glasses and Amorphous Materials, 22-27 September 2002, Pisa; 14 pages, 3 figures; Version 3 takes criticque at Pisa into account; final version 4 will be published in J.Phys.: Condens.Matte

    The cellular prion protein increases the uptake and toxicity of tdp-43 fibrils

    Get PDF
    Cytoplasmic aggregation of the primarily nuclear TAR DNA-binding protein 43 (TDP-43) affects neurons in most amyotrophic lateral sclerosis (ALS) and approximately half of frontotemporal lobar degeneration (FTLD) cases. The cellular prion protein, PrPC, has been recognized as a common receptor and downstream effector of circulating neurotoxic species of several proteins involved in neurodegeneration. Here, capitalizing on our recently adapted TDP-43 real time quaking induced reaction, we set reproducible protocols to obtain standardized preparations of recombinant TDP-43 fibrils. We then exploited two different cellular systems (human SH-SY5Y and mouse N2a neuroblastoma cells) engineered to express low or high PrPC levels to investigate the link between PrPC expression on the cell surface and the internalization of TDP-43 fibrils. Fibril uptake was increased in cells overexpressing either human or mouse prion protein. Increased internalization was associated with detrimental consequences in all PrP-overexpressing cell lines but was milder in cells expressing the human form of the prion protein. As described for other amyloids, treatment with TDP-43 fibrils induced a reduction in the accumulation of the misfolded form of PrPC, PrPSc, in cells chronically infected with prions. Our results expand the list of misfolded proteins whose uptake and detrimental effects are mediated by PrPC, which encompass almost all pathological amyloids involved in neurodegeneration

    Semiclassical approximations for Hamiltonians with operator-valued symbols

    Full text link
    We consider the semiclassical limit of quantum systems with a Hamiltonian given by the Weyl quantization of an operator valued symbol. Systems composed of slow and fast degrees of freedom are of this form. Typically a small dimensionless parameter ε1\varepsilon\ll 1 controls the separation of time scales and the limit ε0\varepsilon\to 0 corresponds to an adiabatic limit, in which the slow and fast degrees of freedom decouple. At the same time ε0\varepsilon\to 0 is the semiclassical limit for the slow degrees of freedom. In this paper we show that the ε\varepsilon-dependent classical flow for the slow degrees of freedom first discovered by Littlejohn and Flynn, coming from an \epsi-dependent classical Hamilton function and an ε\varepsilon-dependent symplectic form, has a concrete mathematical and physical meaning: Based on this flow we prove a formula for equilibrium expectations, an Egorov theorem and transport of Wigner functions, thereby approximating properties of the quantum system up to errors of order ε2\varepsilon^2. In the context of Bloch electrons formal use of this classical system has triggered considerable progress in solid state physics. Hence we discuss in some detail the application of the general results to the Hofstadter model, which describes a two-dimensional gas of non-interacting electrons in a constant magnetic field in the tight-binding approximation.Comment: Final version to appear in Commun. Math. Phys. Results have been strengthened with only minor changes to the proofs. A section on the Hofstadter model as an application of the general theory was added and the previous section on other applications was remove

    Health services research into postnatal depression : results from a preliminary cross-cultural study

    Get PDF
    Background: Little is known about the availability and uptake of health and welfare services by women with postnatal depression in different countries. Aims: Within the context of a cross- cultural research study, to develop and test methods for undertaking quantitative health services research in postnatal depression. Method: Interviews with service planners and the collation of key health indicators were used to obtain a profile of service availability and provision. A service use questionnaire was developed and administered to a pilot sample in a number of European study centres. Results: Marked differences in service access and use were observed between the centres, including postnatal nursing care and contacts with primary care services.Rates of use of specialist services were generally low.Common barriers to access to care included perceived service quality and responsiveness. On the basis of the pilot work, a postnatal depression version of the Service Receipt Inventory was revised and finalised. Conclusions: This preliminary study demonstrated the methodological feasibility of describing and quantifying service use, highlighted the varied and often limited use of care in this population, and indicated the need for an improved understanding of the resource needs and implications of postnatal depression

    Equilibration times in numerical simulation of structural glasses: Comparing parallel tempering and conventional molecular dynamics

    Full text link
    Generation of equilibrium configurations is the major obstacle for numerical investigation of the slow dynamics in supercooled liquid states. The parallel tempering (PT) technique, originally proposed for the numerical equilibration of discrete spin-glass model configurations, has recently been applied in the study of supercooled structural glasses. We present an investigation of the ability of parallel tempering to properly sample the liquid configuration space at different temperatures, by mapping the PT dynamics into the dynamics of the closest local potential energy minima (inherent structures). Comparing the PT equilibration process with the standard molecular dynamics equilibration process we find that the PT does not increase the speed of equilibration of the (slow) configurational degrees of freedom.Comment: 5 pages, 3 figure

    Coevolution of activating and inhibitory receptors within mammalian carcinoembryonic antigen families

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Most rapidly evolving gene families are involved in immune responses and reproduction, two biological functions which have been assigned to the carcinoembryonic antigen (CEA) gene family. To gain insights into evolutionary forces shaping the CEA gene family we have analysed this gene family in 27 mammalian species including monotreme and marsupial lineages.</p> <p>Results</p> <p>Phylogenetic analysis provided convincing evidence that the primordial CEA gene family in mammals consisted of five genes, including the immune inhibitory receptor-encoding <it>CEACAM1 </it>(CEA-related cell adhesion molecule) ancestor. Our analysis of the substitution rates within the nucleotide sequence which codes for the ligand binding domain of CEACAM1 indicates that the selection for diversification is, perhaps, a consequence of the exploitation of CEACAM1 by a variety of viral and bacterial pathogens as their cellular receptor. Depending on the extent of the amplification of an ancestral <it>CEACAM1</it>, the number of <it>CEACAM1</it>-related genes varies considerably between mammalian species from less than five in lagomorphs to more than 100 in bats. In most analysed species, ITAM (immunoreceptor tyrosine-based activation motifs) or ITAM-like motif-containing proteins exist which contain Ig-V-like, ligand binding domains closely related to that of CEACAM1. Human CEACAM3 is one such protein which can function as a CEACAM1 decoy receptor in granulocytes by mediating the uptake and destruction of specific bacterial pathogens via its ITAM-like motif. The close relationship between <it>CEACAM1 </it>and its ITAM-encoding relatives appears to be maintained by gene conversion and reciprocal recombination. Surprisingly, secreted CEACAMs resembling immunomodulatory CEACAM1-related trophoblast-specific pregnancy-specific glycoproteins (PSGs) found in humans and rodents evolved only in a limited set of mammals. The appearance of <it>PSG</it>-like genes correlates with invasive trophoblast growth in these species.</p> <p>Conclusions</p> <p>These phylogenetic studies provide evidence that pathogen/host coevolution and a possible participation in fetal-maternal conflict processes led to a highly species-specific diversity of mammalian CEA gene families.</p
    corecore