167 research outputs found

    An innovation-focused roadmap for a sustainable global photovoltaic industry

    Get PDF
    The solar photovoltaic (PV) industry has undergone a dramatic evolution over the past decade, growing at an average rate of 48 percent per year to a global market size of 31. GW in 2012, and with the price of crystalline-silicon PV module as low as $0.72/W in September 2013. To examine this evolution we built a comprehensive dataset from 2000 to 2012 for the PV industries in the United States, China, Japan, and Germany, which we used to develop a model to explain the dynamics among innovation, manufacturing, and market. A two-factor learning curve model is constructed to make explicit the effect of innovation from economies of scale. The past explosive growth has resulted in an oversupply problem, which is undermining the effectiveness of "demand-pull" policies that could otherwise spur innovation. To strengthen the industry we find that a policy shift is needed to balance the excitement and focus on market forces with a larger commitment to research and development funding. We use this work to form a set of recommendations and a roadmap that will enable a next wave of innovation and thus sustainable growth of the PV industry into a mainstay of the global energy economy. © 2013 Elsevier Ltd

    Middleware architectures for the smart grid: A survey on the state-of-the-art, taxonomy and main open issues

    Get PDF
    The integration of small-scale renewable energy sources in the smart grid depends on several challenges that must be overcome. One of them is the presence of devices with very different characteristics present in the grid or how they can interact among them in terms of interoperability and data sharing. While this issue is usually solved by implementing a middleware layer among the available pieces of equipment in order to hide any hardware heterogeneity and offer the application layer a collection of homogenous resources to access lower levels, the variety and differences among them make the definition of what is needed in each particular case challenging. This paper offers a description of the most prominent middleware architectures for the smart grid and assesses the functionalities they have, considering the performance and features expected from them in the context of this application domain

    The role of large-scale energy storage design and dispatch in the power grid: A study of very high grid penetration of variable renewable resources

    Get PDF
    We present a result of hourly simulation performed using hourly load data and the corresponding simulated output of wind and solar technologies distributed throughout the state of California. We examined how we could achieve very high-energy penetration from intermittent renewable system into the electricity grid. This study shows that the maximum threshold for the storage need is significantly less than the daily average demand. In the present study, we found that the approximate network energy storage is of the order of 186. GW. h/22. GW (approximately 22% of the average daily demands of California). Allowing energy dumping was shown to increase storage use, and by that way, increases grid penetration and reduces the required backup conventional capacity requirements. Using the 186. GW. h/22. GW storage and at 20% total energy loss, grid penetration was increased to approximately 85% of the annual demand of the year while also reducing the conventional backup capacity requirement to 35. GW. This capacity was sufficient to supply the year round hourly demand, including 59 GW peak demand, plus a distribution loss of about 5.3%. We conclude that designing an efficient and least cost grid may require the capability to capture diverse physical and operational policy scenarios of the future grid. © 2014 Elsevier Ltd
    • …
    corecore