35 research outputs found

    A Bioinformatics Approach to Identifying Potential Biomarkers for Cryptosporidium parvum: A Coccidian Parasite Associated with Fetal Diarrhea

    Get PDF
    Cryptosporidium parvum (C. parvum) is a protozoan parasite known for cryptosporidiosis in pre-weaned calves. Animals and patients with immunosuppression are at risk of developing the disease, which can cause potentially fatal diarrhoea. The present study aimed to construct a network biology framework based on the differentially expressed genes (DEGs) of C. parvum infected subjects. In this way, the gene expression profiling analysis of C. parvum infected individuals can give us a snapshot of actively expressed genes and transcripts under infection conditions. In the present study, we have analyzed microarray data sets and compared the gene expression profiles of the patients with the different data sets of the healthy control. Using a network medicine approach to identify the most influential genes in the gene interaction network, we uncovered essential genes and pathways related to C. parvum infection. We identified 164 differentially expressed genes (109 up- and 54 down-regulated DEGs) and allocated them to pathway and gene set enrichment analysis. The results underpin the identification of seven significant hub genes with high centrality values: ISG15, MX1, IFI44L, STAT1, IFIT1, OAS1, IFIT3, RSAD2, IFITM1, and IFI44. These genes are associated with diverse biological processes not limited to host interaction, type 1 interferon production, or response to IL-gamma. Furthermore, four genes (IFI44, IFIT3, IFITM1, and MX1) were also discovered to be involved in innate immunity, inflammation, apoptosis, phosphorylation, cell proliferation, and cell signaling. In conclusion, these results reinforce the development and implementation of tools based on gene profiles to identify and treat Cryptosporidium parvum-related diseases at an early stage

    Transcriptional analysis of Rhazya stricta in response to jasmonic acid

    Get PDF
    Background: Jasmonic acid (JA) is a signal transducer molecule that plays an important role in plant development and stress response; it can also efficiently stimulate secondary metabolism in plant cells. Results: RNA-Seq technology was applied to identify differentially expressed genes and study the time course of gene expression in Rhazya stricta in response to JA. Of more than 288 million total reads, approximately 27% were mapped to genes in the reference genome. Genes involved during the secondary metabolite pathways were up- or downregulated when treated with JA in R. stricta. Functional annotation and pathway analysis of all up- and downregulated genes identified many biological processes and molecular functions. Jasmonic acid biosynthetic, cell wall organization, and chlorophyll metabolic processes were upregulated at days 2, 6, and 12, respectively. Similarly, the molecular functions of calcium-transporting ATPase activity, ADP binding, and protein kinase activity were also upregulated at days 2, 6, and 12, respectively. Time-dependent transcriptional gene expression analysis showed that JA can induce signaling in the phenylpropanoid and aromatic acid pathways. These pathways are responsible for the production of secondary metabolites, which are essential for the development and environmental defense mechanism of R. stricta during stress conditions. Conclusions: Our results suggested that genes involved in flavonoid biosynthesis and aromatic acid synthesis pathways were upregulated during JA stress. However, monoterpenoid indole alkaloid (MIA) was unaffected by JA treatment. Hence, we can postulate that JA plays an important role in R. stricta during plant development and environmental stress conditions. How to cite: Hajrah, NH, Rabah SO, Alghamdi MK, et al. Transcriptional analysis of Rhazya stricta in response to jasmonic acid. Electron J Biotechnol 2021;50. https://doi.org/10.1016/j.ejbt.2021.01.00

    Phytochemical Screening of Rosmarinus officinalis L. as a Potential Anticholinesterase and Antioxidant–Medicinal Plant for Cognitive Decline Disorders

    No full text
    The inhibition of acetylcholinesterase (AChE) by cholinergic agents has been promoted as a potent strategy for treating and managing cognitive decline disorders. A wide range of natural products has long been used as potential sources or formulations of cholinergic inhibitors. Therefore, this study aimed to evaluate different Rosmarinus officinalis L. (R. officinalis) extracts for their AChE inhibitory activity using galanthamine as a standard AChE inhibitor. In this study, the ethyl-acetate extract (at a concentration of 250 µg/mL) exhibited the greatest inhibitory effect against AChE with significant inhibition of 75%, comparable to the inhibitor galanthamine with an inhibition of 88%. Kinetic analysis revealed that the extracts could induce a mixed type of inhibition, as observed in the case of galanthamine, with the highest increased Km and decreased Vmax values in the ethyl acetate extract. The antioxidant potential of the three extracts tested was found to be in the order of ethyl-acetate > ethanol > aqueous, with IC50 values of 272 µg/mL, 387 µg/mL, and 534 µg/mL, respectively. Ethyl-acetate was found to have the highest total phenolic content in all extracts. Further, in silico study showed structural binding characterization of rosmarinic acid and carnosic acid with human AChE enzyme. Rosmarinic acid showed strong binding and formed two hydrogen-bonding interactions with Ser-293 and Arg-296. In light of this, the ethyl-acetate extract of the plant may provide some novel potential pharmacological leads for treating and managing cognitive disorders such as Alzheimer’s

    Biogenic ZnO Nanoparticles Synthesized from Origanum vulgare Abrogates Quorum Sensing and Biofilm Formation in Opportunistic Pathogen Chromobacterium violaceum

    No full text
    This study presents an inexpensive, eco-friendly, and simple green synthesis of ZnO nanoparticles using Origanum vulgare extract. These nanoparticles are non-hazardous, environmentally friendly, and cheaper than other methods of biosynthesis. Ongoing research determines the role of phytochemicals in the fabrication and biosynthesis of ZnO NPs and their role in antibacterial activity and biomedical applications. Characterizations by fourier transform infrared spectroscopy (FTIR), diffuse reflectance UV-visible spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) determine the successful biosynthesis of ZnO NPs. Meanwhile, TEM and X-ray diffraction studies approximated the spherical morphology and crystalline nature of biosynthesized ZnO NPs of nano size in the range of 20–30 nm. The global increase in drug resistance necessitates the search for new drugs with different mechanisms of action. Quorum sensing (QS), a cell-to-cell communication, has gained attention as an emerging drug target. It controls numerous biochemical processes in bacteria, which are essential for their survival and pathogenicity. The potential of nanomedicines has also been tested to synthesize new antibiotics to tackle drug resistance. ZnO NPs were explored for their antibacterial, antiquorum sensing, and antibiofilm activities with a bioreporter strain of Chromobacterium violaceum. Susceptibility testing results indicated the potential antibacterial activity of ZnO NPs with a minimum inhibitory concentration (MIC) of 4 µg/mL and minimum bactericidal concentration (MBC) of 16 µg/mL. Antiquorum-sensing assays revealed that these nanoparticles inhibit quorum sensing with minimum antiquorum sensing activity (MQSIC) of 1 µg/mL, without causing any bacterial growth inhibition. In addition, ZnO NPs inhibit biofilm formation at inhibitory and higher concentrations. RT-qPCR results supported the downregulation of the quorum sensing genes when C. violaceum was treated with ZnO NPs. The outcomes of this study are promising with regard to the biofilm and quorum sensing, emphasizing the potential applications of ZnO NPs against bacterial communication and biofilm formation

    Characterization of the Secretome of Pathogenic Candida glabrata and Their Effectiveness against Systemic Candidiasis in BALB/c Mice for Vaccine Development

    No full text
    Infections by non-albicans Candida species have increased drastically in the past few decades. Candida glabrata is one of the most common opportunistic fungal pathogens in immunocompromised individuals, owing to its capability to attach to various human cell types and medical devices and being intrinsically weakly susceptible to azoles. Immunotherapy, including the development of antifungal vaccines, has been recognized as an alternative approach for preventing and treating fungal infections. Secretory proteins play a crucial role in establishing host–pathogen interactions and are also responsible for eliciting an immune response in the host during candidiasis. Therefore, fungal secretomes can provide promising protein candidates for antifungal vaccine development. This study attempts to uncover the presence of immunodominant antigenic proteins in the C. glabrata secretome and delineate their role in various biological processes and their potency in the development of antifungal vaccines. LC–MS/MS results uncovered that C. glabrata secretome consisted of 583 proteins, among which 33 were identified as antigenic proteins. The protection ability of secretory proteins against hematogenously disseminated infection caused by C. glabrata was evaluated in BALB/c mice. After immunization and booster doses, all the animals were challenged with a lethal dose of C. glabrata. All the mice showing signs of distress were sacrificed post-infection, and target organs were collected, followed by histopathology and C. glabrata (CFU/mg) estimation. Our results showed a lower fungal burden in target organs and increased survival in immunized mice compared to the infection control group, thus revealing the immunogenic property of secreted proteins. Thus, identified secretome proteins of C. glabrata have the potential to act as antigenic proteins, which can serve as potential candidates for the development of antifungal vaccines. This study also emphasizes the importance of a mass-spectrometry approach to identifying the antigenic proteins in C. glabrata secretome

    Thermodynamic Insights of the Molecular Interactions of Dopamine (Neurotransmitter) with Anionic Surfactant in Non-Aqueous Media

    No full text
    This study was aimed at establishing the interactions prevailing in an anionic surfactant, sodium dodecyl sulfate, and dopamine hydrochloride in an alcoholic (ethanol) media by using volumetric, conductometric, and tensiometric techniques. Various methods were utilized to estimate the critical micelle concentration (cmc) values at different temperatures. The entire methods yielded the same cmc values. The corresponding thermodynamic parameters viz. the standard free energy of micellization (Gmico), enthalpy of micellization (Hmico), and entropy of micellization (Smico) were predicted by applying the pseudo-phase separation model. The experimental density data at different temperatures (298.15 K, 303.15 K, 308.15 K, and 313.15 K) were utilized to estimate the apparent molar volumes (Vϕo) at an infinite dilution, apparent molar volumes (Vφcmc) at the critical micelle concentration, and apparent molar volumes (ΔVφm) upon micellization. Various micellar and interfacial parameters, for example, the surface excess concentration (Γmax), standard Gibbs free energy of adsorption at the interface (ΔGoad), and the minimum surface area per molecule (Amin), were appraised using the surface tension data. The results were used to interpret the intermolecular interactions prevailing in the mixed systems under the specified experimental conditions

    Evaluation of <i>Lactiplantibacillus plantarum</i> KAU007 against Low-Pathogenic Avian Influenza Virus (H9N2)

    No full text
    Avian influenza A viruses (AIVs) pose a persistent threat to humans owing to their reassortment and antigenic drift properties. Among them is H9N2, a low-pathogenic avian influenza virus first discovered in the non-human host and later found infective to humans with huge pandemic potential. In recent years, antiviral resistance has become an increasing threat to public health. Additionally, vaccination against AIVs is becoming increasingly challenging with little success due to antigenic drift. This has resulted in a growing demand for products that can replace the presently in-use medications and the development of innovative antiviral therapies. In this study, we systematically investigate the antiviral potential of lactic acid bacteria against H9N2. Bacteria that produce lactic acid are commonly used in food processing. In addition, these bacteria are considered more affordable, effective, and safe “nutraceuticals” than other alternative medicines. We tested Lactiplantibacillus plantarum KAU007 against the low-pathogenic avian influenza virus (H9N2). As confirmed by the hemagglutination assay, KAU007 showed potent antiviral activity against H9N2 and vigorous antioxidant activity. The CFCS showed a dose-dependent reduction in the levels of IL-6 and IFN-γ. Thus, KAU007 might be considered a potential H9N2 target-based probiotic

    Characterization of Defensin-like Protein 1 for Its Anti-Biofilm and Anti-Virulence Properties for the Development of Novel Antifungal Drug against Candida auris

    No full text
    Candida auris has emerged as a pan-resistant pathogenic yeast among immunocompromised patients worldwide. As this pathogen is involved in biofilm-associated infections with serious medical manifestations due to the collective expression of pathogenic attributes and factors associated with drug resistance, successful treatment becomes a major concern. In the present study, we investigated the candidicidal activity of a plant defensin peptide named defensin-like protein 1 (D-lp1) against twenty-five clinical strains of C. auris. Furthermore, following the standard protocols, the D-lp1 was analyzed for its anti-biofilm and anti-virulence properties. The impact of these peptides on membrane integrity was also evaluated. For cytotoxicity determination, a hemolytic assay was conducted using horse blood. The minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) values ranged from 0.047&ndash;0.78 mg/mL and 0.095&ndash;1.56 mg/mL, respectively. D-lp1 at sub-inhibitory concentrations potentially abrogated both biofilm formation and 24-h mature biofilms. Similarly, the peptide severely impacted virulence attributes in the clinical strain of C. auris. For the insight mechanism, D-lp1 displayed a strong impact on the cell membrane integrity of the test pathogen. It is important to note that D-lp1 at sub-inhibitory concentrations displayed minimal hemolytic activity against horse blood cells. Therefore, it is highly useful to correlate the anti-Candida property of D-lp1 along with anti-biofilm and anti-virulent properties against C. auris, with the aim of discovering an alternative strategy for combating serious biofilm-associated infections caused by C. auris

    Phytochemical Screening of <i>Rosmarinus officinalis</i> L. as a Potential Anticholinesterase and Antioxidant–Medicinal Plant for Cognitive Decline Disorders

    No full text
    The inhibition of acetylcholinesterase (AChE) by cholinergic agents has been promoted as a potent strategy for treating and managing cognitive decline disorders. A wide range of natural products has long been used as potential sources or formulations of cholinergic inhibitors. Therefore, this study aimed to evaluate different Rosmarinus officinalis L. (R. officinalis) extracts for their AChE inhibitory activity using galanthamine as a standard AChE inhibitor. In this study, the ethyl-acetate extract (at a concentration of 250 µg/mL) exhibited the greatest inhibitory effect against AChE with significant inhibition of 75%, comparable to the inhibitor galanthamine with an inhibition of 88%. Kinetic analysis revealed that the extracts could induce a mixed type of inhibition, as observed in the case of galanthamine, with the highest increased Km and decreased Vmax values in the ethyl acetate extract. The antioxidant potential of the three extracts tested was found to be in the order of ethyl-acetate > ethanol > aqueous, with IC50 values of 272 µg/mL, 387 µg/mL, and 534 µg/mL, respectively. Ethyl-acetate was found to have the highest total phenolic content in all extracts. Further, in silico study showed structural binding characterization of rosmarinic acid and carnosic acid with human AChE enzyme. Rosmarinic acid showed strong binding and formed two hydrogen-bonding interactions with Ser-293 and Arg-296. In light of this, the ethyl-acetate extract of the plant may provide some novel potential pharmacological leads for treating and managing cognitive disorders such as Alzheimer’s

    Facile Synthesis of Magnetic <i>Nigella Sativa</i> Seeds: Advances on Nano-Formulation Approaches for Delivering Antioxidants and Their Antifungal Activity against <i>Candida albicans</i>

    No full text
    This article reports on incorporating magnetic nanoparticles into natural carbon frameworks derived from Nigella Sativa seeds and their synthesis via co-precipitation reactions for application in biomedicine. The magnetic Nigella Sativa Seeds (Magnetic NSS), a metal oxide-based bio-nanomaterial, has shown excellent water diaper presence due to the presence of a wide range of oxygenous hydroxyl and carboxyl groups. The physicochemical properties of the composites were characterized extensively using Fourier transform infrared spectroscopy (FTIR), powder-X-ray diffraction (XRD), scanning electron microscopy (SEM), elemental analysis, transmission electron microscopy (TEM), and vibrating-sample magnetometer. Furthermore, synthesized magnetic NSS showed antioxidant and antifungal activity. The antifungal susceptibility was further tested against Candida albicans with a MIC value of 3.125 µg/mL. Analysis of antioxidant defense enzymes was determined quantitatively; the results suggested that antioxidant enzyme activity increase with increased magnetic NSS concentration. Furthermore, biofilm inhibition assay from scanning electron microscopy results revealed that magnetic NSS at the concentration of 3.5 μg/mL has anti-biofilm properties and can disrupt membrane integrity
    corecore