8 research outputs found

    Pretreated rice straw as an improved fodder for ruminants-An overview

    Get PDF
    Rice straw, a by-product of the rice production is mainly used as a source of feed for ruminant livestock is the major forage in rice-producing areas in India. The disposal of the rice straw is a serious problem in areas where it is the major agricultural product. It is rich in polysaccharides and has a high lignin and silica content, limiting voluntary intake and reducing degradability by rumen microbes. By rice straw treatment, its quality and digestibility can be improved and enhanced the protein content. Several methods have been used to improve the utilization of rice straw by ruminants or supplemented by other ingredients to increase digestibility and nutrient value before it can be considered a suitable animal feed. In recent years, biological treatments have been investigated for improvement in nutritional value of rice straw. The use of ligninolytic fungi and their extracellular ligninolytic enzymes for treatment of rice straw results in degrading cellulose and hemicelluloses contents which improve its nutritional value. The use of fungi and enzyme treatments is expected to be a practical, cost-effective and environmental-friendly approach for enhancing the nutritive value and digestibility of rice straw. Therefore, the treated rice straw has a good potential as feed for ruminants

    Biostimulation of Anaerobic Digestion Using Iron Oxide Nanoparticles (IONPs) for Increasing Biogas Production from Cattle Manure

    No full text
    The effect of synthesised IONPs employing a nontoxic leaf extract of Azadirachta indica as a reducing, capping, and stabilizing agent for increasing biogas and methane output from cattle manure during anaerobic digestion (AD) was investigated in this study. Furthermore, the UV-visible spectra examination of the synthesized nanoparticles revealed a high peak at 432 nm. Using a transmission electron microscope, the average particle size of IONPs observed was 30–80 nm, with irregular, ultra-small, semi-spherical shapes that were slightly aggregated and well-distributed. IONPs had a polydisparity index (PDI) of 219 nm and a zeta potential of −27.0 mV. A set of six bio-digesters were fabricated and tested to see how varying concentrations of IONPs (9, 12, 15, 18, and 21 mg/L) influenced biogas, methane output, and effluent chemical composition from AD at mesophilic temperatures (35 ± 2 °C). With 18 mg/L IONPs, the maximum specific biogas and methane production were 136.74 L/g of volatile solids (VS) and 64.5%, respectively, compared to the control (p < 0.05), which provided only 107.09 L/g and 51.4%, respectively. Biogas and methane production increased by 27.6% and 25.4%, respectively using 18 mg/L IONPs as compared to control. In all treatments, the pH of the effluent was increased, while total volatile fatty acids, total solids, volatile solids, organic carbon content, and dehydrogenase activity decreased. Total solid degradation was highest (43.1%) in cattle manure + 18 mg/L IONPs (T5). According to the results, the IONPs enhanced the yield of biogas and methane when compared with controls

    Eco-Friendly Antibacterial Finish from Ghamra and Apamarga Leaf Extract for Textile Application

    No full text
    ABSTRACTThe aim of the present study was to develop eco-friendly antibacterial finish from Ghamra and Apamarga leaf extract and its application on textile. Aqueous and methanol extracts from Ghamra and Apamarga leaf had been applied to cotton fabric using pad dry cure method. Antibacterial efficacy of finished fabric samples were tested against Bacillus cereus and Pseudomonas aeruginosa and counted quantitatively by AATCC-100 test method. For testing the efficacy of finish, the samples were inoculated with selected bacterium and further tested to check their bacterial resistance by calculating the percentage reduction in bacterial count. The observations were taken after 24, 48, 72, and 96 hours of inoculation. The results revealed that samples finished with Ghamra and Apamarga leaf extracts showed 100% reduction after 24 hours of inoculation against both bacterial strains, respectively. After 48 hours, it gradually decreased and after 96 hours it decreased to 94.5% and 94.1% against Bacillus cereus and 94.2% and 94% against Pseudomonas aeruginosa in treated samples, respectively. The results also indicated that samples finished with Ghamra and Apamarga leaf extracts provided excellent ultraviolet protection, i.e. 44.51 and 45.37 as exhibited by higher UPF values. The surface morphological studies using SEM showed some fibrillation

    Superabsorbent Polymers as a Soil Amendment for Increasing Agriculture Production with Reducing Water Losses under Water Stress Condition

    No full text
    With an increasing population, world agriculture is facing many challenges, such as climate change, urbanization, the use of natural resources in a sustainable manner, runoff losses, and the accumulation of pesticides and fertilizers. The global water shortage is a crisis for agriculture, because drought is one of the natural disasters that affect the farmers as well as their country’s social, economic, and environmental status. The application of soil amendments is a strategy to mitigate the adverse impact of drought stress. The development of agronomic strategies enabling the reduction in drought stress in cultivated crops is, therefore, a crucial priority. Superabsorbent polymers (SAPs) can be used as an amendment for soil health improvement, ultimately improving water holding capacity and plant available water. These are eco-friendly and non-toxic materials, which have incredible water absorption ability and water holding capacity in the soil because of their unique biochemical and structural properties. Polymers can retain water more than their weight in water and achieve approximately 95% water release. SAP improve the soil like porosity (0.26–6.91%), water holding capacity (5.68–17.90%), and reduce nitrogen leaching losses from soil by up to 45%. This review focuses on the economic assessment of the adoption of superabsorbent polymers and brings out the discrepancies associated with the influence of SAPs application in the context of different textured soil, presence of drought, and their adoption by farmers

    Evaluation of Effect of Brassinolide in Brassica juncea Leaves under Drought Stress in Field Conditions

    No full text
    Drought stress is considered to be a major factor responsible for reduced agricultural productivity, because it is often linked to other major abiotic stresses, such as salinity and heat stress. Understanding drought-tolerance mechanisms is important for crop improvement. Moreover, under drought conditions, it is possible that growth regulators are able to protect the plants. Brassinosteroids not only play a regulatory role in plant growth, but also organize defense mechanisms against various tresses. This study aimed to evaluate the effect of brassinolide on physio-biochemical amendment in two contrasting cultivars (drought-tolerant RH 725, and drought-sensitive RH 749) of Brassica juncea under drought stress. Two foliar sprayings with brassinolide (10 and 20 mg/L) were carried out in both cultivars (RH 725 and RH 749) at two stages&mdash;i.e., flower initiation, and 50% flowering&mdash;under stress conditions. The results clearly revealed that the activities of antioxidative enzymes and non-enzymatic antioxidants (carotenoids, ascorbic acid, and proline) increased significantly in RH 725 at 50% flowering, whereas 20 mg/L of brassinolide showed the most promising response. The different oxidative stress indicators (i.e., hydrogen peroxide, malondialdehyde, and electrolyte leakage) decreased to a significant extent at 20 mg/L of brassinolide spray in RH 725 at 50% flowering. This study indicates that brassinolide intensifies the physio-biochemical attributes by improving the antioxidant system and photosynthetic efficiency in RH 725 at 50% flowering. It is assumed that enhanced production of proline, improvement of the antioxidant system, and reduction in the amount of stress indicators impart strength to the plants to combat the stress conditions

    Biostimulant-Treated Seedlings under Sustainable Agriculture: A Global Perspective Facing Climate Change

    No full text
    The primary objectives of modern agriculture includes the environmental sustainability, low production costs, improved plants&rsquo; resilience to various biotic and abiotic stresses, and high sowing seed value. Delayed and inconsistent field emergence poses a significant threat in the production of agri-crop, especially during drought and adverse weather conditions. To open new routes of nutrients&rsquo; acquisition and revolutionizing the adapted solutions, stewardship plans will be needed to address these questions. One approach is the identification of plant based bioactive molecules capable of altering plant metabolism pathways which may enhance plant performance in a brief period of time and in a cost-effective manner. A biostimulant is a plant material, microorganism, or any other organic compound that not only improves the nutritional aspects, vitality, general health but also enhances the seed quality performance. They may be effectively utilized in both horticultural and cereal crops. The biologically active substances in biostimulant biopreparations are protein hydrolysates (PHs), seaweed extracts, fulvic acids, humic acids, nitrogenous compounds, beneficial bacterial, and fungal agents. In this review, the state of the art and future prospects for biostimulant seedlings are reported and discussed. Biostimulants have been gaining interest as they stimulate crop physiology and biochemistry such as the ratio of leaf photosynthetic pigments (carotenoids and chlorophyll), enhanced antioxidant potential, tremendous root growth, improved nutrient use efficiency (NUE), and reduced fertilizers consumption. Thus, all these properties make the biostimulants fit for internal market operations. Furthermore, a special consideration has been given to the application of biostimulants in intensive agricultural systems that minimize the fertilizers&rsquo; usage without affecting quality and yield along with the limits imposed by European Union (EU) regulations
    corecore