51 research outputs found

    Design of engineered active zymogen of microbial transglutaminase

    Get PDF
    Please click Additional Files below to see the full abstrac

    Self-assembly of Ni-NTA-modified β-Annulus Peptides into Artificial Viral Capsids and Encapsulation of His-tagged Proteins

    Get PDF
    β-Annulus peptide bearing Cys at the N-terminal from tomato bushy stunt virus was synthesised using a standard Fmoc-protected solid-phase method, and the petide was modified with Ni-NTA at the N-terminal. The Ni-NTA-modified β-annulus peptide self-assembled into virus-like nanocapsules of approximately 40 nm in diameter. The critical aggregation concentration of these nanocapsules in 10 mM Tris-HCl buffer (pH 7.3) at 25°C was 0.053 μM, which is 470 times lower than that of unmodified β-annulus peptides. Moreover, size exclusion chromatography of the peptide assembly indicated encapsulation of His-tagged green fluorescent protein in the Ni-NTA-modified artificial viral capsid

    An Enzyme-Labeled Protein Polymer Bearing Pendent Haptens

    No full text

    Artificial Self-Sufficient P450 in Reversed Micelles

    No full text
    Cytochrome P450s are heme-containing monooxygenases that require electron transfer proteins for their catalytic activities. They prefer hydrophobic compounds as substrates and it is, therefore, desirable to perform their reactions in non-aqueous media. Reversed micelles can stably encapsulate proteins in nano-scaled water pools in organic solvents. However, in the reversed micellar system, when multiple proteins are involved in a reaction they can be separated into different micelles and it is then difficult to transfer electrons between proteins. We show here that an artificial self-sufficient cytochrome P450, which is an enzymatically crosslinked fusion protein composed of P450 and electron transfer proteins, showed micelle-size dependent catalytic activity in a reversed micellar system. Furthermore, the presence of thermostable alcohol dehydrogenase promoted the P450-catalyzed reaction due to cofactor regeneration
    corecore