39 research outputs found

    Inhibition of carotenoid biosynthesis by CRISPR/Cas9triggers cell wall remodelling in carrot

    Get PDF
    Recent data indicate that modifications to carotenoid biosynthesis pathway in plants alter the expression of genes affecting chemical composition of the cell wall. Phytoene synthase (PSY) is a rate limiting factor of carotenoid biosynthesis and it may exhibit species-specific and organ-specific roles determined by the presence of psy paralogous genes, the importance of which often remains unrevealed. Thus, the aim of this work was to elaborate the roles of two psy paralogs in a model system and to reveal biochemical changes in the cell wall of psy knockout mutants. For this purpose, Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and CRISPR associated (Cas9) proteins (CRISPR/Cas9) vectors were introduced to carotenoid-rich carrot (Daucus carota) callus cells in order to induce mutations in the psy1 and psy2 genes. Gene sequencing, expression analysis, and carotenoid content analysis revealed that the psy2 gene is critical for carotenoid biosynthesis in this model and its knockout blocks carotenogenesis. The psy2 knockout also decreased the expression of the psy1 paralog. Immunohistochemical staining of the psy2 mutant cells showed altered composition of arabinogalactan proteins, pectins, and extensins in the mutant cell walls. In particular, low-methylesterified pectins were abundantly present in the cell walls of carotenoidrich callus in contrast to the carotenoid-free psy2 mutant. Transmission electron microscopy revealed altered plastid transition to amyloplasts instead of chromoplasts. The results demonstrate for the first time that the inhibited biosynthesis of carotenoids triggers the cell wall remodelling

    Effect of Buckwheat Groats Processing on the Content and Bioaccessibility of Selected Minerals

    No full text
    Adequate supply of minerals in the diet is necessary for the proper functioning of the human body. In recent years gluten-free diet, which rigorous forms may lead to deficiencies of mineral components (especially Mg, Mn, Zn and Cu), is becoming more and more popular. Buckwheat grains do not contain gluten, and their nutritional value is very high. They are often consumed in the form of groats, which are obtained from roasted and dehulled seeds. The purpose of the work was to determine how conducting the buckwheat groats production in industrial conditions affects the content and availability of magnesium, manganese, zinc and copper. The results indicated that husk removal had a particularly adverse effect on the total manganese content and its amount released by enzymatic digestion, whereas it had a positive effect on the post-digestion zinc level by increasing it by nearly half. Hydrothermal processes especially affected the release of analysed elements simulated by the in vitro method, and the extent of changes depended on the processing parameters. It was shown that bioaccessibility of minerals may be increased by treating buckwheat at a lower temperature for a short time, which has a particularly beneficial effect on the manganese and magnesium. Treating grains at a higher temperature reduces the bioaccessibility of all analysed elements, which was particularly noted for zinc and copper. Based on the obtained results, it should be stated that buckwheat groats should be a regular part of human diet, because they are a good source of easily digestible mineral compounds. Their consumption should be especially considered by people on a rigorous gluten-free diet, as they can prevent mineral deficiencies associated with its use

    Influence of Rootstock on Yield Quantity and Quality, Contents of Biologically Active Compounds and Antioxidant Activity in Regent Grapevine Fruit

    No full text
    The cultivation of vines in temperate climates poses many difficulties to be overcome. The soil and climatic conditions in Poland limit the choice of vine varieties that can be used in the field; therefore, growers are often limited to varieties that are tolerant to extreme winter temperatures and spring frosts and to cultivars that are able to achieve optimum berry maturity at the end of the season. The study evaluated the effect of six rootstock types and own-root bushes on yield quantity and quality and on the content of biologically active compounds and antioxidant activity in Regent grapevine fruit. The research was conducted in 2015 at NOBILIS Vineyard (50°39′ N; 21°34′ E) in the Sandomierz Upland. Among the evaluated rootstocks, 125AA turned out to exert the significantly best effect on the yield, grape and berry weight, and number of grapes per bush. The fruit from bushes grafted on the 5BB rootstock were characterised by the highest content of L-ascorbic acid and tannins

    Nutritional Values of Minikiwi Fruit (<i>Actinidia arguta</i>) after Storage: Comparison between DCA New Technology and ULO and CA

    No full text
    The dietary properties of minikiwi make them, along with other fruits and vegetables, suitable as the basis for many slimming and pro-health diets. Prolonging the availability of minikiwi can be provided by different storage technologies. This experiment focused on evaluating the effect of various O2 and CO2 concentrations, i.e., low-oxygen atmosphere (DCA, 0.4% CO2:0.4% O2; ULO, 1.5% CO2:1.5% O2) or high-CO2 (CA, 5% CO2:1.5% O2) storage, in order to provide the consumer with fruits with comparable high nutritional values. Evaluation gave the basic characteristics of the fruits that characterize their health-promoting properties, i.e., total polyphenols (TPC), phenolic acids and flavonols, antioxidant activity (AA), monosaccharides, and acid content. The atmosphere with a higher CO2 content of 5% (CA) effectively influenced the high value of ascorbic acid even after 12 weeks of storage. DCA technology contributed to a significant inhibition of phenol loss but not as effectively as CA technology. In contrast, glucose and fructose contents were found to be significantly higher after storage in ULO or DCA, while sucrose content was more stable in fruit stored in CA or DCA. CA technology conditions stabilized the citric acid content of minikiwi, while DCA technology was less effective in inhibiting acid loss. The nutritional value of the fruit after storage in CA or DCA was not significantly reduced, which will allow the supply of fresh minikiwi fruit to be extended and provide a valuable component of the human diet

    Evaluation of the Influence of Rootstock Type on the Yield Parameters of Vines Using a Mathematical Model in Nontraditional Wine-Growing Conditions

    No full text
    Great interest in viticulture in temperate climates results from the introduction of new interspecies hybrids of grapevines which are quite popular due to their high resistance to fungal diseases and lower temperature. However, the impact of rootstocks, common in vine cultivation, is little to not known, which makes setting up vineyards a challenge. This study aimed to evaluate the effect of the following six rootstock types: 101-14 Mgt, SORI, 161-49 C, 5 BB, SO4, 125 AA, and grapevines with their own roots on the yield quantity and berry quality (expressed by Brix extract) of Regent grapevines in temperate climates (southeastern Poland). A five-year experiment alongside a novel numerical model is applied to formulate precise and constructive findings about the rootstock impact in a temperate climate. Both the experimental and numerical part are supported by detailed statistical analysis. The five-year period of study indicates that the vines on rootstock 125 AA yielded the best, significantly. Shrubs grafted on rootstock 161-49 yielded the lowest, while the fruit extract content grafted on rootstock 101-14 was significantly lower among the evaluated ones. The parameters of own-rooted bushes and those grafted on SO4 rootstock did not differ significantly, except for the extract. The model leads to convergent conclusions with statistical analysis of raw experimental data. The 125 AA rootstock was the best for all nine tested case scenarios. On the other hand, 161-49 rootstock was the weakest, justified only in the most challenging conditions

    Using Wood-Based Waste from Grapevine Cultivation for Energy Purposes

    No full text
    This paper presents the possibility of the energetic utilization of biowaste in the form of lignified one-year shoots from the cultivation of grapevines of the Seyval Blanc (WSBL), Solaris (WSOL), Regent (WREG) and Rondo (WRON) varieties, grown in temperate climate zones. A technical analysis, an elemental analysis and the determination of the highest heat value and lowest heat value were performed to define the quality parameters of waste as fuel. In addition, the emission factors of SO2, NOx, CO, CO2 and dust were estimated to demonstrate the impact of potential biowaste from combustion. Based on the stoichiometric equations, the exhaust gas composition, the theoretical oxygen demand and the total flue gas volume were evaluated. The study showed that the material with the highest energy potential was WREG (LHV-16.19 MJ&middot;kg&minus;1), with an ash content of 3.68%, while the lowest potential was found for WRON (LHV-15.88 MJ&middot;kg&minus;1), with an ash content of 4.21%. The study showed that the use of the studied viticulture waste instead of hard coal could reduce CO emissions by 26&ndash;27%, CO2 by 24&ndash;26%, NOx by 55&ndash;56%, SO2 by 96&ndash;97% and dust by 77&ndash;80%

    Using Wood-Based Waste from Grapevine Cultivation for Energy Purposes

    No full text
    This paper presents the possibility of the energetic utilization of biowaste in the form of lignified one-year shoots from the cultivation of grapevines of the Seyval Blanc (WSBL), Solaris (WSOL), Regent (WREG) and Rondo (WRON) varieties, grown in temperate climate zones. A technical analysis, an elemental analysis and the determination of the highest heat value and lowest heat value were performed to define the quality parameters of waste as fuel. In addition, the emission factors of SO2, NOx, CO, CO2 and dust were estimated to demonstrate the impact of potential biowaste from combustion. Based on the stoichiometric equations, the exhaust gas composition, the theoretical oxygen demand and the total flue gas volume were evaluated. The study showed that the material with the highest energy potential was WREG (LHV-16.19 MJ·kg−1), with an ash content of 3.68%, while the lowest potential was found for WRON (LHV-15.88 MJ·kg−1), with an ash content of 4.21%. The study showed that the use of the studied viticulture waste instead of hard coal could reduce CO emissions by 26–27%, CO2 by 24–26%, NOx by 55–56%, SO2 by 96–97% and dust by 77–80%

    Solvent Front Position Extraction with Semi-Automatic Device as a Powerful Sample Preparation Procedure Prior to Quantitative Instrumental Analysis

    No full text
    The new prototype device is applied to the Solvent Front Position Extraction (SFPE) sample preparation procedure. The mobile phase is deposited onto the chromatographic plate adsorbent layer by the pipette, which is moved, according to programmed movement path, by a 3D printer mechanism. The application of the prototype device to SFPE procedure leads to the increased repeatability of the results and significant reduction of the analysis time in comparison to the classical procedure of chromatogram development. Additionally, the new equipment allows use procedures that are not possible to run using the classic chromatogram development. In this paper, the results of manual and semi-automatic sample preparation with SFPE are compared and the possible application of this prototype device is discussed

    Management of biomass of selected grape leaves varieties in the process of methane fermentation

    No full text
    Biogas plants are one of the most stable sources of renewable energy. Currently, there is a noticeable increase in the amount of post-production residues from agricultural production and agri-food processing (fruit and vegetable processing, fermentation, beet pulp, or lignocellulosic waste), which, can be used for biogas production after appropriate pretreatment. The aim of this study was to examine the possibility of using the biomass produced during the cultivation of grapes on a selected farm as a substrate for a biogas plant, taking into account the production process. The research was carried out in 2018-2020 in a vineyard located in the Sandomierz Upland in the south-eastern part of Poland. Own rooted vines were grown as a single continuous string with a trunk height of 40 cm and a length of one fixed arm approx. 0.9 m, on which six pivots were left every year after applying a short cut, from which 12-16 fruit shoots were derived, the so-called grapevines. Leaves were collected at random from three locations on the fruiting shoot, a total of 30 leaves in each replicate. Each sample consisted of 1/3 of the leaves collected at the bottom, 1/3 in the middle, and 1/3 at the top of the canopy. Leaf area was estimated with a model 3100 area meter on a sample of 30 leaves from each replicate. Both the quantity and quality of the obtained material as a substrate for methane fermentation were evaluated. Biogas yield tests in optimal conditions for mesophilic bacteria were conducted on three substrate samples referred to as ‘Regent’, ‘Seyval Blanc’, and ‘Solaris’. The yields of the tested material ranged from 51.0 to 59.0 Nm3 biogas per Mg of biomass

    Effect of Hormonization Treatment on Yield Quantity and Quality, Contents of Biologically Active Compounds, and Antioxidant Activity in ‘Einset Seedless’ Grapevine Fruits and Raisins

    No full text
    In this study, we determined the effect of hormonization treatment on yield quantity and quality, content of biologically active compounds, and antioxidant activity in fruits and raisins of ‘Einset Seedless’ grapevine. Field studies were conducted in 2017 at Nobilis Vineyard (50°39â€Č N; 21°34â€Č E) in the Sandomierz Upland. Analytical studies were carried out in the Laboratory of the University of Life Sciences in Lublin. Hormonized fruits and raisins, which were dried at 40 °C in a food dryer for 7 days, were the experimental material. It was shown that the application of the hormonization treatment had a significant effect on yield size and quality. The hormonization treatment and the form of plant material analyzed had a significant effect on the content of biologically active compounds and the antioxidant activity in ‘Einset Seedless’ grapevine fruits and raisins. The concentration of applied gibberellic acid had a significant effect on the levels of acidity, content of anthocyanins, and antioxidant activity determined with the FRAP and DPPH methods. The application of the multivariate analysis technique showed that, in the fresh fruits and raisins, the level of biologically active compounds and antioxidant activity in the case of the 200 mg∙GA3∙L−1 concentration and in the control combination was similar but differed significantly in the case of the 300 mg∙GA3∙L−1 application
    corecore