601 research outputs found

    The neutron halo of 6^6He in a microscopic model

    Full text link
    The two--neutron separation energy of 6^6He has been reproduced for the first time in a realistic parameter--free microscopic multicluster model comprising the α+n+n\alpha +n+n and t+tt+t clusterizations, with α\alpha cluster breathing excitations included. The contribution of the t+tt+t channel is substantial. A very thick (0.85 fm) neutron halo has been found in full agreement with the results of the latest phenomenological analysis.Comment: Submitted to Phys. Rev. C, 8 pages, Latex with Revtex, 2 figures (not included) available on request, 08-03-9

    Lunin-Maldacena backgrounds from the classical Yang-Baxter equation -- Towards the gravity/CYBE correspondence

    Get PDF
    We consider \gamma-deformations of the AdS_5xS^5 superstring as Yang-Baxter sigma models with classical r-matrices satisfying the classical Yang-Baxter equation (CYBE). An essential point is that the classical r-matrices are composed of Cartan generators only and then generate abelian twists. We present examples of the r-matrices that lead to real \gamma-deformations of the AdS_5xS^5 superstring. Finally we discuss a possible classification of integrable deformations and the corresponding gravity solution in terms of solutions of CYBE. This classification may be called the gravity/CYBE correspondence.Comment: 18 pages, no figure, LaTeX, v2:references and further clarifications adde

    Invariant Peano curves of expanding Thurston maps

    Full text link
    We consider Thurston maps, i.e., branched covering maps f ⁣:S2S2f\colon S^2\to S^2 that are postcritically finite. In addition, we assume that ff is expanding in a suitable sense. It is shown that each sufficiently high iterate F=fnF=f^n of ff is semi-conjugate to zd ⁣:S1S1z^d\colon S^1\to S^1, where dd is equal to the degree of FF. More precisely, for such an FF we construct a Peano curve γ ⁣:S1S2\gamma\colon S^1\to S^2 (onto), such that Fγ(z)=γ(zd)F\circ \gamma(z) = \gamma(z^d) (for all zS1z\in S^1).Comment: 63 pages, 12 figure

    Moscow-type NN-potentials and three-nucleon bound states

    Get PDF
    A detailed description of Moscow-type (M-type) potential models for the NN interaction is given. The microscopic foundation of these models, which appear as a consequence of the composite quark structure of nucleons, is discussed. M-type models are shown to arise naturally in a coupled channel approach when compound or bag-like six-quark states, strongly coupled to the NN channel, are eliminated from the complete multiquark wave function. The role of the deep-lying bound states that appear in these models is elucidated. By introducing additional conditions of orthogonality to these compound six-quark states, a continuous series of almost on-shell equivalent nonlocal interaction models, characterized by a strong reduction or full absence of a local repulsive core (M-type models), is generated. The predictions of these interaction models for 3N systems are analyzed in detail. It is shown that M-type models give, under certain conditions, a stronger binding of the 3N system than the original phase-equivalent model with nodeless wave functions. An analysis of the 3N system with the new versions of the Moscow NN potential describing also the higher even partial waves is presented. Large deviations from conventional NN force models are found for the momentum distribution in the high momentum region. In particular, the Coulomb displacement energy for nuclei ^3He - ^3H displays a promising agreement with experiment when the ^3H binding energy is extrapolated to the experimental value.Comment: 23 pages Latex, 9 figures, to appear in Phys.Rev.

    Four-Body Bound State Calculations in Three-Dimensional Approach

    Get PDF
    The four-body bound state with two-body interactions is formulated in Three-Dimensional approach, a recently developed momentum space representation which greatly simplifies the numerical calculations of few-body systems without performing the partial wave decomposition. The obtained three-dimensional Faddeev-Yakubovsky integral equations are solved with two-body potentials. Results for four-body binding energies are in good agreement with achievements of the other methods.Comment: 29 pages, 2 eps figures, 8 tables, REVTeX

    The three-nucleon bound state using realistic potential models

    Full text link
    The bound states of 3^3H and 3^3He have been calculated using the Argonne v18v_{18} plus the Urbana three-nucleon potential. The isospin T=3/2T=3/2 state have been included in the calculations as well as the nn-pp mass difference. The 3^3H-3^3He mass difference has been evaluated through the charge dependent terms explicitly included in the two-body potential. The calculations have been performed using two different methods: the solution of the Faddeev equations in momentum space and the expansion on the correlated hyperspherical harmonic basis. The results are in agreement within 0.1% and can be used as benchmark tests. Results for the CD-Bonn interaction are also presented. It is shown that the 3^3H and 3^3He binding energy difference can be predicted model independently.Comment: 5 pages REVTeX 4, 1 figures, 6 table

    Precise solution of few-body problems with stochastic variational method on correlated Gaussian basis

    Get PDF
    Precise variational solutions are given for problems involving diverse fermionic and bosonic N=27N=2-7-body systems. The trial wave functions are chosen to be combinations of correlated Gaussians, which are constructed from products of the single-particle Gaussian wave packets through an integral transformation, thereby facilitating fully analytical calculations of the matrix elements. The nonlinear parameters of the trial function are chosen by a stochastic technique. The method has proved very efficient, virtually exact, and it seems feasible for any few-body bound-state problems emerging in nuclear or atomic physics.Comment: 39 pages (revtex) + 3 figures (appended as compressed uuencoded .ps files

    Literature-based discovery of diabetes- and ROS-related targets

    Get PDF
    Abstract Background Reactive oxygen species (ROS) are known mediators of cellular damage in multiple diseases including diabetic complications. Despite its importance, no comprehensive database is currently available for the genes associated with ROS. Methods We present ROS- and diabetes-related targets (genes/proteins) collected from the biomedical literature through a text mining technology. A web-based literature mining tool, SciMiner, was applied to 1,154 biomedical papers indexed with diabetes and ROS by PubMed to identify relevant targets. Over-represented targets in the ROS-diabetes literature were obtained through comparisons against randomly selected literature. The expression levels of nine genes, selected from the top ranked ROS-diabetes set, were measured in the dorsal root ganglia (DRG) of diabetic and non-diabetic DBA/2J mice in order to evaluate the biological relevance of literature-derived targets in the pathogenesis of diabetic neuropathy. Results SciMiner identified 1,026 ROS- and diabetes-related targets from the 1,154 biomedical papers (http://jdrf.neurology.med.umich.edu/ROSDiabetes/). Fifty-three targets were significantly over-represented in the ROS-diabetes literature compared to randomly selected literature. These over-represented targets included well-known members of the oxidative stress response including catalase, the NADPH oxidase family, and the superoxide dismutase family of proteins. Eight of the nine selected genes exhibited significant differential expression between diabetic and non-diabetic mice. For six genes, the direction of expression change in diabetes paralleled enhanced oxidative stress in the DRG. Conclusions Literature mining compiled ROS-diabetes related targets from the biomedical literature and led us to evaluate the biological relevance of selected targets in the pathogenesis of diabetic neuropathy.http://deepblue.lib.umich.edu/bitstream/2027.42/78315/1/1755-8794-3-49.xmlhttp://deepblue.lib.umich.edu/bitstream/2027.42/78315/2/1755-8794-3-49-S7.XLShttp://deepblue.lib.umich.edu/bitstream/2027.42/78315/3/1755-8794-3-49-S10.XLShttp://deepblue.lib.umich.edu/bitstream/2027.42/78315/4/1755-8794-3-49-S8.XLShttp://deepblue.lib.umich.edu/bitstream/2027.42/78315/5/1755-8794-3-49-S3.XLShttp://deepblue.lib.umich.edu/bitstream/2027.42/78315/6/1755-8794-3-49-S1.XLShttp://deepblue.lib.umich.edu/bitstream/2027.42/78315/7/1755-8794-3-49-S4.XLShttp://deepblue.lib.umich.edu/bitstream/2027.42/78315/8/1755-8794-3-49-S2.XLShttp://deepblue.lib.umich.edu/bitstream/2027.42/78315/9/1755-8794-3-49-S12.XLShttp://deepblue.lib.umich.edu/bitstream/2027.42/78315/10/1755-8794-3-49-S11.XLShttp://deepblue.lib.umich.edu/bitstream/2027.42/78315/11/1755-8794-3-49-S9.XLShttp://deepblue.lib.umich.edu/bitstream/2027.42/78315/12/1755-8794-3-49-S5.XLShttp://deepblue.lib.umich.edu/bitstream/2027.42/78315/13/1755-8794-3-49-S6.XLShttp://deepblue.lib.umich.edu/bitstream/2027.42/78315/14/1755-8794-3-49.pdfPeer Reviewe
    corecore