8 research outputs found

    Blood pressure homeostasis is maintained by a P311-TGF-β axis

    Get PDF
    P311 is an 8-kDa intracellular protein that is highly conserved across species and is expressed in the nervous system as well as in vascular and visceral smooth muscle cells. P311-null (P311(–/–)) mice display learning and memory defects, but alterations in their vasculature have not been previously described. Here we report that P311(–/–) mice are markedly hypotensive with accompanying defects in vascular tone and VSMC contractility. Functional abnormalities in P311(–/–) mice resulted from decreased total and active levels of TGF-β1, TGF-β2, and TGF-β3 that arise as a specific consequence of decreased translation. Vascular hypofunctionality was fully rescued in vitro and in vivo by exogenous TGF-β1–TGF-β3. Conversely, P311-transgenic (P311(TG)) mice had elevated levels of TGF-β1–TGF-β3 and subsequent hypertension. Consistent with findings attained in mouse models, arteries recovered from hypertensive human patients displayed increased P311 expression. Thus, we identified P311 as the first protein known to modulate TGF-β translation and the first pan-regulator of TGF-β expression under steady-state conditions. Together, our findings point to P311 as a critical blood pressure regulator and establish a potential link between P311 expression and the development of hypertensive disease

    Anti-Diabetic Potential of the Leaves of Anisomeles malabarica in Streptozotocin Induced Diabetic Rats

    No full text
    Background/Aims: Diabetes mellitus is a pandemic metabolic disorder that is affecting a majority of populations in recent years. There is a requirement for new drugs that are safer and cheaper due to the side effects associated with the available medications. Methods: We investigated the anti-diabetic activity of leaves of Anisomeles malabarica following bioactivity guided fractionation. The different solvent (hexane, ethyl acetate, methanol and water) extracts of A. malabarica leaves were used in acute treatment studies to evaluate and identify the active fraction. The ethyl acetate extract was subjected to further fractionation using silica gel column chromatography and the compounds were identified by LC-SRM/MS and GC-MS. Additional chronic treatment studies were carried out using this active fraction (AMAF) for 30 days in experimental diabetic rats. Fasting blood glucose (FBG), glycosylated hemoglobin (HbA1c), plasma insulin levels and glucose tolerance were measured along with insulin resistance/sensitivity indicators (HOMA-IR, HOMA-β and QUICKI) to assess the beneficial effects of A. malabarica in the management of diabetes mellitus. Results: Among the different solvent extracts tested, ethyl acetate extract showed maximum (66%) anti-hyperglycemic activity. The hexane and ethyl acetate (1: 1) fraction that has maximum anti-diabetic activity was identified as active fraction of A. malabarica (AMAF). The FBG, HbA1c, plasma insulin levels and insulin sensitivity/resistance indicators such as glucose tolerance, HOMA-IR, HOMA-β and QUICKI were significantly improved to near normal in diabetic rats treated with AMAF. Further, we identified key flavonoids and fatty acids as the anti-diabetic active principles from the AMAF of A. malabarica leaves. Conclusion: The results of our study suggest that Anisomeles malabarica has potential anti-diabetic activity in STZ induced diabetic rats

    Effects of the SANT Domain of Tension-Induced/Inhibited Proteins (TIPs), Novel Partners of the Histone Acetyltransferase p300, on p300 Activity and TIP-6-Induced Adipogenesis ▿

    No full text
    We previously identified a set of transcription regulators, referred to as TIPs (tension-induced/inhibited proteins), with a role in myogenic versus adipogenic differentiation. Here we report that the TIP family comprises eight isoforms, all bearing a SANT (switching-defective protein 3, adaptor 2, nuclear receptor corepressor, and transcription factor IIIB) domain and some of them presenting S-adenosyl-l-methionine (SAM) and nuclear receptor box (NRB) motifs, all characteristic of histone-modifying enzymatic complexes. TIPs have SANT-dependent, p300-mediated histone acetyltransferase (HAT) activity. Ectopic TIP-6 (SANT+ SAM− NRB−) but not TIP-6ΔSANT induced de novo PPARγ2-mediated adipogenic gene expression in NIH 3T3 cells and promoted preadipocyte differentiation into fat cells. TIP-6 was also involved in mediating hormonally/biochemically induced adipogenic differentiation of 3T3-L1 cells. Furthermore, TIP-6 was identified in adipose tissue in vivo. TIP-6 bound directly and indirectly to p300 and histone H4 (H4). Deletion of the SANT domain did not abolish TIP-6 interaction with p300 and H4 but eliminated direct TIP-6 binding to p300. Chromatin immunoprecipitation assays showed the recruitment of TIP-6, TIP-6ΔSANT, and p300 to the PPARγ2 promoter, but H3/H4 acetylation occurred only when p300 was directly associated with TIP-6. These studies demonstrated the importance of TIPs in the recruitment of p300 to specific promoters and in the regulation of p300 HAT activity through the involvement of the SANT domain. Furthermore, we identified TIP-6 as a new member of the adipogenic cascade

    Antihyperlipidemic and Biochemical Activities of Mcy Protein in Streptozotocin Induced Diabetic Rats

    No full text
    Background: This study was aimed to evaluate the protective effects of a novel anti-hyperglycemic “Mcy protein” isolated from the fruits of Momordica cymbalaria in streptozotocin induced- diabetes rat model. Materials and Methods: Wild type and Streptozotocin induced diabetic male wistar albino rats were either treated with single intraperitoneal injection of 2.5 mg Mcy protein/kg body weight or acetate buffer daily for 30 days. Fasting blood glucose and, serum and tissue lipid levels were measured along with biochemical analysis for hepatic and renal function tests. Results: Mcy protein significantly reduced the fasting blood glucose and, serum as well as tissue lipid levels (pConclusion: Mcy protein can alleviate hyperlipidemia and help manage diabetes by stimulating insulin secretion without evident toxic effects on liver and kidney
    corecore