13 research outputs found

    Surfactant Effects on Mortality and Morbidity of Respiratory Distress Syndrome in Neonates

    No full text
    Objective: The purpose of this study was to compare the mortality and morbidity rates of neonatal respiratory distress syndrome (RDS) treated with and without surfactant in ventilated patients. Methods: In this descriptive-analytical study, the morbidity and mortality rates of RDS in 50 patients of the study group treated with surfactant were compared with 66 patients of control group treated without surfactant. The children of the control group received treatment at a time when surfactant was not available in market. Surfactant was used as Survanta during the first 24 hours of life with a dose of 4 ml/kg in four different positions through tracheal tube only once. Findings: The two groups were comparable in baseline parameters including birth weight, sex, gestational age and primary diagnosis. Mortality reduced significantly. There were no differences in the incidence of severe complications including, intraventricular hemorrhage and patent ductus arteriosus, but pneumothorax, sepsis and pulmonary hemorrhage occurred more common in the control group. Conclusion: Use of surfactant in neonatal respiratory distress syndrome significantly decreased mortality, pneumothorax, sepsis and pulmonary hemorrhage

    Adenomyoma causing gastric outlet obstruction

    No full text
    We report an adenomyoma in a 15-year-old girl with an obstructing pyloric mass. Histologic examination of the resected specimen showed irregular glands and smooth muscle cells consistent with adenomyoma. Our review of the literature showed seven other similar pediatric cases where these hamartomas mimic the presentation of hypertrophic pyloric stenosis as well as duplication cysts radiographically and are difficult to biopsy endoscopically. While rare, gastric adenomyomas are benign but require complete surgical resection for diagnostic clarity and therapeutic resolution of obstruction. Keywords: Gastric adenomyoma, Gastric outlet obstructio

    Undifferentiated embryonal sarcoma of the liver mimicking venolymphatic malformation

    No full text
    Undifferentiated embryonal sarcoma of the liver (UESL) is a primitive hepatic neoplasm that presents in a variety of forms on ultrasonography, computed tomography, and magnetic resonance imaging. In this case report, we present an UESL with fluid-fluid cysts mimicking a radiographic presentation commonly seen in venolymphatic malformation on magnetic resonance imaging. This is the first described case of UESL, with this radiographic presentation and outlines, the importance of considering this malignant lesion when evaluating liver tumors in children. Keywords: Undifferentiated embryonal sarcoma of the liver, Primary liver tumors, Magnetic resonance imaging, Venolymphatic malformatio

    The <em>C. elegans</em> Rab Family: Identification, Classification and Toolkit Construction

    Get PDF
    <div><p>Rab monomeric GTPases regulate specific aspects of vesicle transport in eukaryotes including coat recruitment, uncoating, fission, motility, target selection and fusion. Moreover, individual Rab proteins function at specific sites within the cell, for example the ER, golgi and early endosome. Importantly, the localization and function of individual Rab subfamily members are often conserved underscoring the significant contributions that model organisms such as <em>Caenorhabditis elegans</em> can make towards a better understanding of human disease caused by Rab and vesicle trafficking malfunction. With this in mind, a bioinformatics approach was first taken to identify and classify the complete <em>C. elegans</em> Rab family placing individual Rabs into specific subfamilies based on molecular phylogenetics. For genes that were difficult to classify by sequence similarity alone, we did a comparative analysis of intron position among specific subfamilies from yeast to humans. This two-pronged approach allowed the classification of 30 out of 31 <em>C. elegans</em> Rab proteins identified here including <em>Rab31/Rab50</em>, a likely member of the last eukaryotic common ancestor (LECA). Second, a molecular toolset was created to facilitate research on biological processes that involve Rab proteins. Specifically, we used Gateway-compatible <em>C. elegans</em> ORFeome clones as starting material to create 44 full-length, sequence-verified, dominant-negative (DN) and constitutive active (CA) <em>rab</em> open reading frames (ORFs). Development of this toolset provided independent research projects for students enrolled in a research-based molecular techniques course at California State University, East Bay (CSUEB).</p> </div

    A list and description of Rab isolates created for the <i>C. elegans</i> ORFeome-based toolkit.

    No full text
    <p>WT, DN and CA clones included in the Rab Toolkit are given isolate names otherwise an explanation for its absence is provided. Subfamily classifications are based on Diekmann et al. 2011 <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0049387#pone.0049387-Diekmann1" target="_blank">[33]</a> and/or data presented here. The majority of <i>C. elegans rab</i> genes are predicted to have only one splice variant with the following exceptions: WormBase describes two splice variants for <i>rab-3</i> that code for proteins 233 and 219 amino acids (aa) in length. ORFeome project primers were designed to amplify the shorter isoform only. WormBase describes two splice variants for <i>4R79.2 (Rab44)</i> that code for proteins 311 aa and 395 aa in length. ORFeome project primers were designed to amplify the longer isoform only. Names listed under “other” are from WormBase or Pereira-Leal and Seabra (2001). Finally, while <i>rab-37</i> shows 100% identity with the Refseq protein NP_001041293 it contains an additional 5 amino acids at its N-terminus. See text for details.</p

    A chladogram of Rab family members from <i>C. elegans</i> and <i>H. sapien</i>s.

    No full text
    <p>The evolutionary history was inferred using the Neighbor-Joining phylogenetic reconstruction method. The tree is rooted with the natural outlying clade, Rab28. The optimal tree is shown with the percentage of replicate trees (>40) in which the associated genes cluster together in the bootstrap test (500 replicates) provided next to each branch. The tree is drawn to emphasize topology. The evolutionary distances were computed using the JTT amino acid substitution method and are in the units of the number of amino acid differences per site. Evolutionary analyses were conducted using MEGA5. Clades marked with red, orange or yellow circles indicate their degree of stability under a variety of phylogenetic reconstruction parameters (see text and methods for details). Red = 14/14, orange = 13/14 and yellow = 12/14 trees. Genes highlighted with black circles represent putative orphan <i>C. elegan</i> Rabs (lacking a human ortholog). For simplicity, closely related splice variants and well-supported human-specific clades were deleted (see methods for details).</p

    A flow chart describing the lab module involving verification and modification of ORFeome Rab clones.

    No full text
    <p>Steps 1 through 4 were done in parallel to steps A through D. Two peer-review steps at 3 and D were included to minimize mistakes in primer design and sequence analysis of WT ORFeome clones. Abbreviations: Gene of Interest (GOI), Constitutive Active (CA), Dominant Negative (DN), Restriction Fragment Length Polymorphism (RLFP), Polyacrylamide Gel Electrophoresis (PAGE), Human Ras (HRAS), Wild-Type (WT).</p

    Comparative analysis of intron position among diverse Rab subfamily members.

    No full text
    <p>A) Cladogram indicating evolutionary relationships of 18 species examined here <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0049387#pone.0049387-Dunn1" target="_blank">[128]</a>–<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0049387#pone.0049387-Csuros1" target="_blank">[130]</a>. Ecdy. = Ecdysozoa, Chromal. = Chromalveolata. For species abbreviations see Methods. B) An ML tree of Opisthokonts created from the MSA used to map intron positions. Bootstrap support (100 replicates) is indicated for each subfamily cluster. C) For each subfamily, the number of times a <u>S</u>ubfamily <u>S</u>pecific <u>C</u>onserved <u>I</u>ntron <u>P</u>osition (SSCIP) involving the indicated number of species was observed (gray bars), compared to what is expected by chance (black diamonds). The difference between observed and expected is statistically significant where indicated. *P(Monte Carlo) <0.05. ***P(Monte Carlo)≤0.00001. The Rab<i>31, 6, 5, 22, 34, 21</i> and <i>23</i> subfamilies include 17, 18, 17, 9, 9, 10, 14 and 12 species, respectively. D) and E) Heat map indicating number of introns within <i>Rab31</i> (D) or <i>Rab6</i> (E) that match SSCIPs from <i>Rab31, 5, 22, 21, 6, 34</i> and <i>23</i>. The circled number indicates the number of introns present in the MSA for each gene. % equals the percentage of introns that are shared with the true SSCIP. <i>C56E6.2</i> (D) and <i>Y71H2AM.12</i> (E) are highlighted red. Genbank Descriptions (if any) and RABDB! classifications are included. Classification abbreviations include: HypoRabX1 (H.RabX1), HypoRabX2 (H.RabX2), HypoRabX3 (H.RabX3) and MetazoaRabX3 (M.RabX3). F) A pairwise comparison of intron position conservation between specific genes (Rab31 at left, Rab6 at right) and their corresponding set of SSCIPs. Black diamonds plot the probability that a specific number of intron matches would be expected by chance for each set of conditions. Chart 1 plots a comparison of 5 introns with 7 SSCIPs (5×7). Chart 2∶4×7. Chart 3∶2×7. Chart 4∶4×6. Observed values for a subset of genes are indicated with P values estimated from the Monte Carlo simulation data (See text and methods). Species abbreviations are as in A. C) and F) 72 protosplice sites assumed.</p
    corecore