12 research outputs found

    Immune Checkpoint Inhibitors for the Treatment of Central Nervous System (CNS) Metastatic Disease

    Get PDF
    While the CNS has long been viewed as an immune-privileged environment, a paradigm shift in neuro-immunology has elevated the role of systemic immunotherapy for the treatment of metastatic disease. Increasing knowledge regarding the presence of a CNS lymphatic system and the physical and biochemical alteration of the blood brain barrier (BBB) by the tumor microenvironment suggests immune cell trafficking in and out of the CNS is possible. Emerging clinical data suggest immune checkpoint inhibitors (ICIs) can stimulate T cells peripherally to in turn have anti-tumor effects in the CNS. For example, anti-programmed cell death-1 (PD-1) monotherapy with pembrolizumab has shown intracranial response rates of 20–30% in patients with melanoma or non-small cell lung cancer (NSCLC) brain metastases. The combination of nivolumab and ipilimumab [anti-PD-1 and anti-cytotoxic T-lymphocyte-associated protein 4 (CTLA-4)] showed an intracranial response rate of 55% in patients with melanoma brain metastases. More data are needed to confirm these response rates and to determine mechanisms of efficacy and resistance. While local therapies such as stereotactic radiosurgery (SRS), whole-brain radiation therapy (WBRT), and surgery remain current mainstays, ICIS offer potential decreased neurotoxicity. This review summarizes the biological rationale for systemic immunotherapy to treat CNS metastatic disease, existing clinical data on ICIs in this setting and ongoing clinical trials exploring areas of unmet need

    Long-Term Gemcitabine Treatment Reshapes the Pancreatic Tumor Microenvironment and Sensitizes Murine Carcinoma to Combination Immunotherapy

    Get PDF
    Pancreatic ductal adenocarcinoma (PDAC) is a leading cause of cancer-related death with a median survival time of 6–12 months. Most patients present with disseminated disease and the majority are offered palliative chemotherapy. With no approved treatment modalities for patients who progress on chemotherapy, we explored the effects of long-term Gemcitabine on the tumor microenvironment in order to identify potential therapeutic options for chemo-refractory PDAC. Using a combination of mouse models, primary cell line-derived xenografts, and established tumor cell lines, we first evaluated chemotherapy-induced alterations in the tumor secretome and immune surface proteins by high throughput proteomic arrays. In addition to enhancing antigen presentation and immune checkpoint expression, Gemcitabine consistently increased the synthesis of CCL/CXCL chemokines and TGFβ-associated signals. These secreted factors altered the composition of the tumor stroma, conferring Gemcitabine resistance to cancer-associated fibroblasts in vitro and further enhancing TGFβ1 biosynthesis. Combined Gemcitabine and anti-PD-1 treatment in transgenic models of murine PDAC failed to alter disease course unless mice also underwent genetic or pharmacologic ablation of TGFβ signaling. In the setting of TGFβ signaling deficiency, Gemcitabine and anti-PD-1 led to a robust CD8+ T-cell response and decrease in tumor burden, markedly enhancing overall survival. These results suggest that Gemcitabine successfully primes PDAC tumors for immune checkpoint inhibition by enhancing antigen presentation only following disruption of the immunosuppressive cytokine barrier. Given the current lack of third-line treatment options, this approach warrants consideration in the clinical management of Gemcitabine-refractory PDAC

    Safety and Outcomes of Permanent and Retrievable Inferior Vena Cava Filters in the Oncology Population

    No full text
    Background. The role for inferior vena cava (IVC) filters in the oncology population is poorly defined. Objectives. Our primary endpoint was to determine the rate of filter placement in cancer patients without an absolute contraindication to anticoagulation and the rate of recurrent VTE after filter placement in both retrievable and permanent filter groups. Patients/Methods. A single-institution, retrospective study of patients with active malignancies and acute VTE who received a retrievable or permanent IVC filter between 2009-2013. Demographics and outcomes were confirmed on independent chart review. Cost data were obtained using Current Procedural Terminology (CPT) codes. Results. 179 patients with retrievable filters and 207 patients with permanent filters were included. Contraindication to anticoagulation was the most cited reason for filter placement; however, only 76% of patients with retrievable filters and 69% of patients with permanent filters had an absolute contraindication to anticoagulation. 20% of patients with retrievable filters and 24% of patients with permanent filters had recurrent VTE. The median time from filter placement to death was 8.9 and 3.2 months in the retrievable and permanent filter groups, respectively. The total cost of retrievable filters and permanent filters was 2,883,389and2,883,389 and 3,722,688, respectively. Conclusions. The role for IVC filters in cancer patients remains unclear as recurrent VTE is common and time from filter placement to death is short. Filter placement is costly and has a clinically significant complication rate, especially for retrievable filters. More data from prospective, randomized trials are needed to determine the utility of IVC filters in cancer patients

    FGFR3–TACC3: A novel gene fusion in cervical cancer

    No full text
    Cervical cancer epitomizes the success of cancer prevention through the human papillomavirus (HPV) vaccine, but significant challenges remain in the treatment of advanced disease. We report the first three cases of cervical carcinoma harboring an FGFR3–TACC3 fusion, which serves as a novel therapeutic target. The fusion, identified by comprehensive genomic profiling, activates the FGFR pathway that has been implicated in HPV-driven carcinogenesis. One of the patients whose tumor contained the FGFR3–TACC3 fusion was treated with an investigational FGFR tyrosine kinase inhibitor. Concomitant molecular alterations involving the PI3K/AKT/mTOR and RAF/MEK pathways were also identified and suggest other treatment strategies that deserve investigation. This case series highlights the role of comprehensive genomic profiling in the identification of new therapeutic targets and in targeted therapy selection for patients with cervical cancer

    Plasma metabolomic differences in early-onset compared to average-onset colorectal cancer

    No full text
    Abstract Deleterious effects of environmental exposures may contribute to the rising incidence of early-onset colorectal cancer (eoCRC). We assessed the metabolomic differences between patients with eoCRC, average-onset CRC (aoCRC), and non-CRC controls, to understand pathogenic mechanisms. Patients with stage I–IV CRC and non-CRC controls were categorized based on age ≤ 50 years (eoCRC or young non-CRC controls) or  ≥ 60 years (aoCRC or older non-CRC controls). Differential metabolite abundance and metabolic pathway analyses were performed on plasma samples. Multivariate Cox proportional hazards modeling was used for survival analyses. All P values were adjusted for multiple testing (false discovery rate, FDR P < 0.15 considered significant). The study population comprised 170 patients with CRC (66 eoCRC and 104 aoCRC) and 49 non-CRC controls (34 young and 15 older). Citrate was differentially abundant in aoCRC vs. eoCRC in adjusted analysis (Odds Ratio = 21.8, FDR P = 0.04). Metabolic pathways altered in patients with aoCRC versus eoCRC included arginine biosynthesis, FDR P = 0.02; glyoxylate and dicarboxylate metabolism, FDR P = 0.005; citrate cycle, FDR P = 0.04; alanine, aspartate, and glutamate metabolism, FDR P = 0.01; glycine, serine, and threonine metabolism, FDR P = 0.14; and amino-acid t-RNA biosynthesis, FDR P = 0.01. 4-hydroxyhippuric acid was significantly associated with overall survival in all patients with CRC (Hazards ratio, HR = 0.4, 95% CI 0.3–0.7, FDR P = 0.05). We identified several unique metabolic alterations, particularly the significant differential abundance of citrate in aoCRC versus eoCRC. Arginine biosynthesis was the most enriched by the differentially altered metabolites. The findings hold promise in developing strategies for early detection and novel therapies
    corecore