16 research outputs found

    Reduced protumorigenic tumor-associated macrophages with statin use in premalignant human lung adenocarcinoma

    Get PDF
    Background Statins have anticancer properties by acting as competitive inhibitors of the mevalonate pathway. They also have anti-inflammatory activity, but their role in suppressing inflammation in a cancer context has not been investigated to date. Methods We have analyzed the relationship between statin use and tumor-associated macrophages (TAMs) in a cohort of 262 surgically resected primary human lung adenocarcinomas. TAMs were evaluated by multiplex immunostaining for the CD68 pan-TAM marker and the CD163 protumorigenic TAM marker followed by digital slide scanning and partially automated quantitation. Links between statin use and tumor stage, virulence, and cancer-specific survival were also investigated in a wider cohort of 958 lung adenocarcinoma cases. All statistical tests were two-sided. Results We found a statin dose-dependent reduction in protumorigenic TAMs (CD68+CD163+) in both stromal (P = .021) and parenchymal (P = .003) compartments within regions of in situ tumor growth, but this association was lost in invasive regions. No statistically significant relationship between statin use and tumor stage was observed, but there was a statin dose-dependent shift towards lower histological grade as assessed by growth pattern (P = .028). However, statin use was a predictor of slightly worse cancer-specific survival (P = .032), even after accounting for prognostic variables in a multivariable Cox proportional hazards survival model (hazard ratio = 1.38, 95% confidence interval = 1.04 to 1.84). Conclusions Statin use is associated with reduced numbers of protumorigenic TAMs within preinvasive lung adenocarcinoma and is related to reduced tumor invasiveness, suggesting a chemo-preventive effect in early tumor development. However, invasive disease is resistant to these effects, and no beneficial relationship between statin use and patient outcome is observed

    Reduced protumorigenic tumor-associated macrophages with statin use in premalignant human lung adenocarcinoma

    Get PDF
    Background Statins have anticancer properties by acting as competitive inhibitors of the mevalonate pathway. They also have anti-inflammatory activity, but their role in suppressing inflammation in a cancer context has not been investigated to date. Methods We have analyzed the relationship between statin use and tumor-associated macrophages (TAMs) in a cohort of 262 surgically resected primary human lung adenocarcinomas. TAMs were evaluated by multiplex immunostaining for the CD68 pan-TAM marker and the CD163 protumorigenic TAM marker followed by digital slide scanning and partially automated quantitation. Links between statin use and tumor stage, virulence, and cancer-specific survival were also investigated in a wider cohort of 958 lung adenocarcinoma cases. All statistical tests were two-sided. Results We found a statin dose-dependent reduction in protumorigenic TAMs (CD68+CD163+) in both stromal (P = .021) and parenchymal (P = .003) compartments within regions of in situ tumor growth, but this association was lost in invasive regions. No statistically significant relationship between statin use and tumor stage was observed, but there was a statin dose-dependent shift towards lower histological grade as assessed by growth pattern (P = .028). However, statin use was a predictor of slightly worse cancer-specific survival (P = .032), even after accounting for prognostic variables in a multivariable Cox proportional hazards survival model (hazard ratio = 1.38, 95% confidence interval = 1.04 to 1.84). Conclusions Statin use is associated with reduced numbers of protumorigenic TAMs within preinvasive lung adenocarcinoma and is related to reduced tumor invasiveness, suggesting a chemo-preventive effect in early tumor development. However, invasive disease is resistant to these effects, and no beneficial relationship between statin use and patient outcome is observed

    Clonal architecture in mesothelioma is prognostic and shapes the tumour microenvironment.

    Get PDF
    Malignant Pleural Mesothelioma (MPM) is typically diagnosed 20-50 years after exposure to asbestos and evolves along an unknown evolutionary trajectory. To elucidate this path, we conducted multi-regional exome sequencing of 90 tumour samples from 22 MPMs acquired at surgery. Here we show that exomic intratumour heterogeneity varies widely across the cohort. Phylogenetic tree topology ranges from linear to highly branched, reflecting a steep gradient of genomic instability. Using transfer learning, we detect repeated evolution, resolving 5 clusters that are prognostic, with temporally ordered clonal drivers. BAP1/-3p21 and FBXW7/-chr4 events are always early clonal. In contrast, NF2/-22q events, leading to Hippo pathway inactivation are predominantly late clonal, positively selected, and when subclonal, exhibit parallel evolution indicating an evolutionary constraint. Very late somatic alteration of NF2/22q occurred in one patient 12 years after surgery. Clonal architecture and evolutionary clusters dictate MPM inflammation and immune evasion. These results reveal potentially drugable evolutionary bottlenecking in MPM, and an impact of clonal architecture on shaping the immune landscape, with potential to dictate the clinical response to immune checkpoint inhibition

    Mechanisms of aneuploidy induction by RAS and RAF oncogenes

    No full text
    Most cancers progress with the accumulation of genetic mutations with time and this is frequently associated with the acquisition of genomic instability in the form of whole chromosome changes, chromosomal rearrangements, gene amplifications or smaller changes at the nucleotide level. Whole chromosome instability (W-CIN), characterised by aneuploidy, is a major form of genomic instability observed in human cancers and several lines of evidence now support the argument that W-CIN is a promoter of tumourigenesis rather than being a passenger event. The primary mechanism proposed for evolution of CIN is abnormalities in mitosis/cytokinesis. However, mutations in genes directly involved in controlling mitosis/cytokinesis are rare in human cancers and so the mechanisms underpinning the evolution of CIN in cancers are not currently clear. On the other hand, mutations in RAS or BRAF are frequently found in human cancers, many of which demonstrate CIN, suggesting a possible link between deregulated signaling through the RAS/RAF/MEK/ERK pathway and CIN. In this review, we focus on a potential relationship between deregulated RAS/RAF signaling and CIN, and discuss possible mechanisms connecting the two

    ajcr0000083

    No full text
    Abstract: Most cancers progress with the accumulation of genetic mutations with time and this is frequently associated with the acquisition of genomic instability in the form of whole chromosome changes, chromosomal rearrangements, gene amplifications or smaller changes at the nucleotide level. Whole chromosome instability (W-CIN), characterised by aneuploidy, is a major form of genomic instability observed in human cancers and several lines of evidence now support the argument that W-CIN is a promoter of tumourigenesis rather than being a passenger event. The primary mechanism proposed for evolution of CIN is abnormalities in mitosis/cytokinesis. However, mutations in genes directly involved in controlling mitosis/cytokinesis are rare in human cancers and so the mechanisms underpinning the evolution of CIN in cancers are not currently clear. On the other hand, mutations in RAS or BRAF are frequently found in human cancers, many of which demonstrate CIN, suggesting a possible link between deregulated signaling through the RAS/RAF/MEK/ERK pathway and CIN. In this review, we focus on a potential relationship between deregulated RAS/RAF signaling and CIN, and discuss possible mechanisms connecting the two

    KRASG12D expression in lung-resident myeloid cells promotes pulmonary LCH-like neoplasm sensitive to statin treatment

    Full text link
    Langerhans cell histiocytosis (LCH) is a rare histiocytic neoplasm associated with somatic mutations in the genes involved in the RAF/MEK/extracellular signal-regulated kinase (ERK) signaling pathway. Recently, oncogenic mutations in NRAS/KRAS, upstream regulators of the RAF/MEK/ERK pathway, have been reported in pulmonary, but not in nonpulmonary, LCH cases, suggesting organ-specific contribution of oncogenic RAS to LCH pathogenesis. Using a mouse model expressing KRASG12D in the lung by nasal delivery of adenoviral Cre recombinase (Cre), here we show that KRASG12D expression in lung-resident myeloid cells induces pulmonary LCH-like neoplasms composed of pathogenic CD11chighF4/80+CD207+ cells. The pathogenic cells were mitotically inactive, but proliferating precursors were detected in primary cultures of lung tissue. These precursors were derived, at least in part, from CD11cdimCD11bintGr1− lung-resident monocytic cells transformed by KRASG12D. In contrast, BRAFV600E expression induced by the same method failed to develop LCH-like neoplasms, suggesting that each oncogene may initiate pulmonary LCH by transforming different types of lung-resident myeloid cells. In vivo treatment of the KRASG12D-induced LCH-like mouse with the cholesterol-lowering drug atorvastatin ameliorated the pathology, implicating statins as potential therapeutics against a subset of pulmonary LCH
    corecore