29 research outputs found

    Prevalence of some mastitis causes in dromedary camels in Abu Dhabi, United Arab Emirates

    Get PDF
    The present study was designed to determine the prevalence of different types of mastitis in camels in U.A.E. and to identify the causative microorganisms and their sensitivity to different antimicrobial agents. From 162 lactating she-camels, 630 milk samples were collected from different cities in Abu Dhabi Emirate/UAE. The overall prevalence of mastitis was 18.52% (7.94% on quarter basis), the prevalence of clinical and sub clinical mastitis was found to be 24.70% and 11.67% on animal basis, respectively; it being 9.70% and 5.86% on quarter basis, respectively. The hind quarters were more frequently affected than the fore quarters. Bacteriological examination of milk samples revealed that Staphylococcus was the chief etiological agents both in clinical and sub clinical mastitis (41.67%) in camels, followed by Streptococcus spp. (21.67%), Enterobacter spp. (15.00%), C. pyogenes (10.00%), Micrococcus spp. (5.00%), Pasteurells spp. (5.00%) and Pseudomonas aeruginosa (1.66%). Most of the Staphylococcus spp., Streptococcus spp. and C. pyogenes strains were sensitive to carbenicillin, gentamycin, kanamycin, and erythromycin, but resistant to colistin and sulphamethoxazole. Other pathogens like Enterobacter, Micrococcus, Pasteurella spp. and Ps. aeuroginosa isolates showed variable sensitivities to the antimicrobials

    Comment on "Geometric Dilution of Precision in Global Positioning

    No full text

    Reply by Author to P. S. Kamat

    No full text

    Effect Of Alkali Ferrocyanides On Crystallisation Of Sodium Chloride: Preliminary results

    No full text
    Sodium chloride (NaCl) is one of the ubiquitous soluble salts in the environment and is responsible for weathering of building materials. The salt weathering is attributed to the stress developed from crystallisation of these salts in pores of the building materials, with supersaturation as the driving force. In the last years, researchers have successfully mitigated the damage associated with the crystallisa-tion of NaCl by the use of alkali-ferrocyanides (crystallisation inhibitors) in porous building materials. The observed mitigation of the damage has been attributed to lowering of the crystallisation pressure, possibly related to changes in the crystal habit and preferential crystallisation of the salt in the form of efflorescence instead of crypto-florescence. However, the effect of the inhibitor on the development of the so-called crystallisation pressure has not been studied in detail yet. In fact, direct measurement of this pressure is challenging and, until now, only a few experiments have been successful. In this research, an experimental setup has been developed to directly measure the crystallisation forces of NaCl and the effect of fer-rocyanide on these, while visualizing the crystallization process under a microscope. Some preliminary tests using this setup have been carried out: these consisted in monitoring force evolution from a drop of solution with and without the inhibitor confined between two glass plates.Heritage & TechnologyMaterials and Environmen

    Effect of a mixed-in crystallization inhibitor on the properties of hydraulic mortars

    No full text
    Porous building materials are often subjected to damage due to salt crystallization. In recent years, the addition of crystallization inhibitors in lime-based mortar, has shown promising results in improving durability of this material against salt decay. Lime-based mortars have low mechanical properties and slow setting. They are often replaced with hydraulic binders to overcome these limitations. However, the effect of crystallization inhibitors in mortars with hydraulic binders is still unknown. Incorporation of crystallization inhibitors in hydraulic mortars would widen the application field of this new technology. In this research, the possibility to develop hydraulic mortars with mixed-in sodium ferrocyanide, an inhibitor of sodium chloride crystallization, is explored. As an essential first step, the influence of this inhibitor addition on the properties of hydraulic mortars is investigated. Two common types of hydraulic binders, natural hydraulic lime (NHL) and ordinary Portland cement (CEM I), were studied; the inhibitor was added in different amounts (0%, 0.1% and 1% by binder weight) during mortar (and binder paste) preparation. Relevant mortar and binder paste properties, in fresh (hydration, workability, setting time) and hardened (mechanical strength, elastic modulus, pore size distribution, water absorption) state, were assessed using several complementary methods and techniques. The results indicate that the addition of ferrocyanide does not alter the studied properties of both NHL and CEMI-based mortar and binder pastes. These results are promising for the further development of hydraulic mortars with an improved durability with respect to salt decay.Heritage & TechnologyMaterials and Environmen

    Дослідження моделювання постійного, змінного та перехідного струмів кантілівера MEMS

    No full text
    Робота присвячена дослідженню моделювання постійного, змінного та перехідного струмів кантілівера MEMS. У роботі моделюється прямокутна система відкритого типу. У даному випадку ми змінювали довжину кантілівера MEMS (платиновий електрод) і вивчали його вплив у наступних випадках: i) вплив напруги на ємність і положення променю (аналіз постійного струму), ii) положення променю у часовій області, ємність і напруга (аналіз змінного струму) та iii) положення променю у часовій області, ємність і напруга (аналіз перехідних процесів). Результати показали, що довжина активного електрода кантілівера MEMS значно впливає на продуктивність MEMS. Крім того, напруга на кантілівері MEMS лінійно зростає з часом і виявилося, що вона не залежить від довжини електрода і діелектричних матеріалів, які використовувалися в розглянутій системі.The present reports deals with the DC, AC, and transient simulation study of MEMS cantilever. The open-ended rectangular system is simulated in the present investigation. In the present case, we have varied the length of MEMS cantilever (platinum electrode) and studied its effect on the following cases: i) the effect of voltage on the capacitance and beam position (DC analysis), ii) time domain beam position, capacitance, and voltage (AC analysis), and iii) time domain beam position, capacitance, and voltage (transient analysis). The results suggested that the length of an active electrode of MEMS cantilever significantly affects the MEMS performance. In addition, the voltage of MEMS cantilever linearly increases with respect to time and it was found to be independent of the electrode length and dielectric materials, which were used in the considered system

    Multidrug resistance-linked gene signature predicts overall survival of patients with primary ovarian serous carcinoma

    No full text
    PURPOSE: This study assesses the ability of multidrug resistance (MDR)-associated gene expression patterns to predict survival in patients with newly diagnosed carcinoma of the ovary. The scope of this research differs substantially from that of previous reports, as a very large set of genes was evaluated whose expression has been shown to affect response to chemotherapy. EXPERIMENTAL DESIGN: We applied a customized TaqMan Low Density Array, a highly sensitive and specific assay, to study the expression profiles of 380 MDR-linked genes in 80 tumor specimens collected at initial surgery to debulk primary serous carcinoma. The RNA expression profiles of these drug resistance genes were correlated with clinical outcomes. RESULTS: Leave-one-out cross-validation was used to estimate the ability of MDR gene expression to predict survival. Although gene expression alone does not predict overall survival (P=0.06), four covariates (age, stage, CA125 level and surgical debulking) do (P=0.03). When gene expression was added to the covariates, we found an 11-gene signature that provides a major improvement in overall survival prediction (log-rank statistic P<0.003). The predictive power of this 11-gene signature was confirmed by dividing high and low risk patient groups, as defined by their clinical covariates, into four specific risk groups based on expression levels. CONCLUSION: This study reveals an 11-gene signature that allows a more precise prognosis for patients with serous cancer of the ovary treated with carboplatin- and paclitaxel-based therapy. These 11 new targets offer opportunities for new therapies to improve clinical outcome in ovarian cancer
    corecore