4 research outputs found

    H-ZSM-5 Materials Embedded in an Amorphous Silica Matrix: Highly Selective Catalysts for Propylene in Methanol-to-Olefin Process

    No full text
    H-ZSM-5 materials embedded in an amorphous silica were successfully synthesized with three different Si/Al ratios (i.e., 40, 45, and 50). The presence of the MFI structure in the synthesized samples was confirmed by X-ray diffraction (XRD), Fourier transform infra-red (FT-IR), and solid state-nuclear magnetic resonance (SSNMR) techniques. The morphology and textural properties of the samples were investigated by scanning electron microscopy (SEM), TEM, and N2-physisorption measurements. Furthermore, acidic properties of the synthesized catalysts have been studied by NH3-TPD and FT-IR spectroscopy of CO adsorption studies. Variation of the Si/Al ratio affected the crystal morphology, porosity, and particle size, as well as the strength and distribution of acid sites. The synthesized zeolite materials possessed low acid-site density and exhibited high catalytic activity in the methanol-to-olefin (MTO) reaction. To study the intermediate species responsible for catalyst deactivation, the MTO reaction was carried out at high temperature (500 °C) to accelerate catalyst deactivation. Interestingly, the synthesized catalysts offered high selectivity towards the formation of propylene (C3=), in comparison to a commercial microporous crystalline H-ZSM-5 with Si/Al = 40, under the same reaction conditions. The synthesized H-ZSM-5 materials offered a selectivity ratio of C3=/C2= 12, while it is around 2 for the commercial H-ZSM-5 sample. The formation of hydrocarbon species during MTO reaction over zeolite samples has been systematically studied with operando UV-vis spectroscopy and online gas chromatography. It is proposed that the strength and type of acid sites of catalyst play a role in propylene selectivity as well as the fast growing of active intermediate species. The effective conversion of methanol into propylene in the case of synthesized H-ZSM-5 materials was observed due to possession of weak acid sites. This effect is more pronounced in H-ZSM-5 sample with a Si/Al ratio of 45

    Few-Unit-Cell MFI Zeolite Synthesized using a Simple Di-quaternary Ammonium Structure-Directing Agent.

    No full text
    Synthesis of a pentasil-type zeolite with ultra-small few-unit-cell crystalline domains, which we call FDP (few-unit-cell crystalline domain pentasil), is reported. FDP is made using bis-1,5(tributyl ammonium) pentamethylene cations as structure directing agent (SDA). This di-quaternary ammonium SDA combines butyl ammonium, in place of the one commonly used for MFI synthesis, propyl ammonium, and a five-carbon nitrogen-connecting chain, in place of the six-carbon connecting chain SDAs that are known to fit well within the MFI pores. X-ray diffraction analysis and electron microscopy imaging of FDP indicate ca. 10 nm crystalline domains organized in hierarchical micro-/meso-porous aggregates exhibiting mesoscopic order with an aggregate particle size up to ca. 5 μm. Al and Sn can be incorporated into the FDP zeolite framework to produce active and selective methanol-to-hydrocarbon and glucose isomerization catalysts, respectively
    corecore