3 research outputs found
Exosomal mediated signal transduction through artificial microRNA (amiRNA):A potential target for inhibition of SARS-CoV-2
Exosome trans-membrane signals provide cellular communication between the cells through transport and/or receiving the signal by molecule, change the functional metabolism, and stimulate and/or inhibit receptor signal complexes. COVID19 genetic transformations are varied in different geographic positions, and single nucleotide polymorphic lineages were reported in the second waves due to the fast mutational rate and adaptation. Several vaccines were developed and in treatment practice, but effective control has yet to reach in cent presence. It was initially a narrow immune-modulating protein target. Controlling these diverse viral strains may inhibit their transuding mechanisms primarily to target RNA genes responsible for COVID19 transcription. Exosomal miRNAs are the main sources of transmembrane signals, and trans-located miRNAs can directly target COVID19 mRNA transcription. This review discussed targeted viral transcription by delivering the artificial miRNA (amiRNA) mediated exosomes in the infected cells and significant resources of exosome and their efficacy
Swift Fabrication of Silver Nanoparticles Using Bougainvillea glabra: Potential Against the Japanese Encephalitis Vector, Culex tritaeniorhynchus Giles (Diptera: Culicidae)
Mosquitoes are the most critical group of insects in the context of public health, since they transmit key parasites and pathogens, causing millions of deaths annually. Culex tritaeniorhynchus is an important vector of Japanese encephalitis (JE) across urban and semi-urban areas of Asia. In this study, we bio-fabricated silver nanoparticles (Ag NP) using the leaf extract of Bougainvillea glabra as reducing and stabilizing agent. The synthesis of Ag NP was confirmed analyzing the excitation of surface Plasmon resonance using ultravioletâvisible (UVâvis) spectrophotometry. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) showed the clustered and irregular shapes of Ag NP. The presence of silver was determined by energy dispersive X-ray (EDX) spectroscopy. Fourier transform infrared (FTIR) spectroscopy analysis investigated the identity of secondary metabolites, which may act as Ag NP capping agents. The acute toxicity of B. glabra extract, synthesized Ag NP and a combined treatment testing blends of both mosquitocidals was evaluated against larvae and pupae of Cx. tritaeniorhynchus.B. glabra showed LC50 of 198.93 (larva I), 234.50 (II), 309.18 (III), 371.69 (IV) and 466.09 (pupa) ”g/ml, Ag NP LC50 ranged from 7.77 (I) to 19.44 ”g/ml (pupa). Combined treatments with B. glabra leaf extract plus 5.12.5 ”g/ml of Ag NP lowered the botanical LC50 to 66.09 (I), 76.48 (II), 99.02 (III), 133.43 (IV) and 179.74 ”g/ml (IV), respectively. The effectiveness of green-fabricated Ag NP against the JE vector was confirmed in adulticidal tests, as well as evaluating the impact of Ag NP on fecundity and longevity of adult mosquitoes. Lastly, the larvicidal effectiveness of Ag NP was confirmed in the field, treating sewage water bodies. Overall, this study suggests that the green-synthesized Ag NP fabricated using B. glabra can be considered a potential mosquito control device against the JE vector, C. tritaeniorhynchus in Asian regions