6 research outputs found

    Cancer activity and bleeding events post-PCI

    Get PDF
    Purpose : Limited data exist about clinically relevant bleeding events related to antiplatelet therapy after percutaneous coronary intervention (PCI) in cancer patients. We investigated the risk factors for clinically relevant bleeding events in patients with cancer after PCI with stent implantation. Patients and Methods : Patients with solid cancer subjected to first PCI were divided into active (n = 45) and non-active cancer groups (n = 44). The active group included non-operable patients on treatment or with metastasis ; the non-active included those already subjected to or for whom radical surgery was planned within 3 months after the index PCI. Results : During a median follow-up of 2.2 years, 11 bleeding events occurred, with only one occurring in the non-active cancer group. Half of them occurred during the dual-antiplatelet therapy (DAPT) period, and the rest occurred during single-antiplatelet therapy (SAPT) period. Kaplan-Meier analysis showed significantly more bleeding events in the active cancer group (p = 0.010). Multivariate Cox regression hazard analysis revealed cancer activity as a significant independent risk factor for bleeding (p = 0.023) ; but not for three-point major adverse cardiovascular events. Conclusion : Clinically relevant bleeding risk after PCI was significantly lower in non-active cancer. Active cancer group had clinically relevant bleeding during both DAPT and SAPT periods

    Cfs1p, a Novel Membrane Protein in the PQ-Loop Family, Is Involved in Phospholipid Flippase Functions in Yeast

    Get PDF
    Type 4 P-type ATPases (P4-ATPases) function as phospholipid flippases, which translocate phospholipids from the exoplasmic leaflet to the cytoplasmic leaflet of the lipid bilayer, to generate and maintain asymmetric distribution of phospholipids at the plasma membrane and endosomal/Golgi membranes. The budding yeast Saccharomyces cerevisiae has four heteromeric flippases (Drs2p, Dnf1p, Dnf2p, and Dnf3p), associated with the Cdc50p family noncatalytic subunit, and one monomeric flippase, Neo1p. They have been suggested to function in vesicle formation in membrane trafficking pathways, but details of their mechanisms remain to be clarified. Here, to search for novel factors that functionally interact with flippases, we screened transposon insertional mutants for strains that suppressed the cold-sensitive growth defect in the cdc50Δ mutant. We identified a mutation of YMR010W encoding a novel conserved membrane protein that belongs to the PQ-loop family including the cystine transporter cystinosin and the SWEET sugar transporters. We named this gene CFS1 (cdc fifty suppressor 1). GFP-tagged Cfs1p was partially colocalized with Drs2p and Neo1p to endosomal/late Golgi membranes. Interestingly, the cfs1Δ mutation suppressed growth defects in all flippase mutants. Accordingly, defects in membrane trafficking in the flippase mutants were also suppressed. These results suggest that Cfs1p and flippases function antagonistically in membrane trafficking pathways. A growth assay to assess sensitivity to duramycin, a phosphatidylethanolamine (PE)-binding peptide, suggested that the cfs1Δ mutation changed PE asymmetry in the plasma membrane. Cfs1p may thus be a novel regulator of phospholipid asymmetry

    Optical Nature of Non-Substituted Triphenylmethyl Cation: Crystalline State Emission, Thermochromism, and Phosphorescence

    No full text
    Since the discovery of the triphenylmethyl (trityl) cation 120 years ago, a variety of aromatic cations having various colors and luminescence properties have been rigorously studied. Many, differently substituted trityl cations have been synthesized and their optical properties have been elucidated. However, the optical properties of the parent, non-substituted and highly reactive trityl cation, which was observed to be very weakly luminescent, have not been subjected to detailed investigation. In the effort described herein, we explored the optical nature of non-substituted trityl hexafluorophosphate (PF6) in the crystalline state. Trityl PF6 was found to exist as two crystal polymorphs including a yellow (Y) and an orange (O) form. Moreover, we observed that these crystalline forms display crystalline-state emission with different colors. The results of X-ray crystallographic analysis showed that the two polymorphs have totally different molecular packing arrangements. Furthermore, an investigation of their optical properties revealed that the O-crystal undergoes a distinct color change to yellow upon cooling as a consequence of a change in the nature of the charge transfer interaction between the cation and PF6 anion, and that both the Y and O crystal exhibit phosphorescence

    Effects of magnesium deficiency on magnesiumuptake activity of rice root, evaluated using 28Mg as a tracer

    No full text
    Aims The mechanisms underlying magnesium (Mg)uptake by plant roots remain to be fully elucidated. Inparticular, there is little information about the effects ofMg deficiency on Mg uptake activity. A Mg uptakekinetic study is essential for better understanding theMg uptake system.Methods We performed a Mg uptake tracer experimentin rice plants using 28Mg.Results Mg uptake was mediated by high- and lowaffinitytransport systems. The Km value of the highaffinitytransport system was approximately 70 μMunder Mg-deficient conditions. The Mg uptake activit
    corecore