238 research outputs found

    Harnessing finger millet to combat calcium deficiency in humans: challenges and prospects

    Get PDF
    Puranik S, Kam J, Sahu PP, Yadav R, Srivastava RK, Ojulong H and Yadav R (2017) Harnessing Finger Millet to Combat Calcium Deficiency in Humans: Challenges and Prospects. Front. Plant Sci. 8:1311. doi: 10.3389/fpls.2017.01311Humans require more than twenty mineral elements for healthy body function. Calcium (Ca), one of the essential macromineral, is required in relatively large quantities in the diet for maintaining a sound overall health. Young children, pregnant and nursing women in marginalized and poorest regions of the world, are at highest risk of Ca malnutrition. Elderly population is another group of people most commonly affected by Ca deficiency mainly in the form of osteoporosis and osteopenia. Improved dietary intake of Ca may be the most cost-effective way to meet such deficiencies. Finger millet [Eleusine coracana (L.) Gaertn.], a crop with inherently higher Ca content in its grain, is an excellent candidate for understanding genetic mechanisms associated with Ca accumulation in grain crops. Such knowledge will also contribute towards increasing Ca contents in other staple crops consumed on daily basis using plant-breeding (also known as biofortification) methods. However, developing Ca-biofortified finger millet to reach nutritional acceptability faces various challenges. These include identifying and translating the high grain Ca content to an adequately bioavailable form so as to have a positive impact on Ca malnutrition. In this review, we assess some recent advancements and challenges for enrichment of its Ca value and present possible inter-disciplinary prospects for advancing the actual impact of Ca-biofortified finger millet.publishersversionPeer reviewe

    Dietary interventions for type 2 diabetes: How millet comes to help

    Get PDF
    Diabetes has become a highly problematic and increasingly prevalent disease world-wide. It has contributed towards 1.5 million deaths in 2012. Management techniques for diabetes prevention in high-risk as well as in affected individuals, beside medication, are mainly through changes in lifestyle and dietary regulation. Particularly, diet can have a great influence on life quality for those that suffer from, as well as those at risk of, diabetes. As such, considerations on nutritional aspects are required to be made to include in dietary intervention. This review aims to give an overview on the general consensus of current dietary and nutritional recommendation for diabetics. In light of such recommendation, the use of plant breeding, conventional as well as more recently developed molecular marker-based breeding and biofortification, are discussed in designing crops with desired characteristics. While there are various recommendations available, dietary choices are restricted by availability due to geo-, political- or economical- considerations. This particularly holds true for countries such as India, where 65 million people (up from 50 million in 2010) are currently diabetic and their numbers are rising at an alarming rate. Millets are one of the most abundant crops grown in India as well as in Africa, providing a staple food source for many poorest of the poor communities in these countries. The potentials of millets as a dietary component to combat the increasing prevalence of global diabetes are highlighted in this review

    Expanding the Miscanthus market in the UK:Growers in profile and experience, benefits and drawbacks of the bioenergy crop

    Get PDF
    Research Funding Biotechnology and Biological Sciences Research Council. Grant Number: BB/V011553/1 EPSRC Centre for Doctoral Training in Additive Manufacturing. Grant Number: EP/S000771/1 UK Supergen Bioenergy Hub. Grant Number: RG15855Peer reviewedPublisher PD

    Moisture content estimation and senescence phenotyping of novel Miscanthus hybrids combining UAV-based remote sensing and machine learning

    Get PDF
    Miscanthus is a leading perennial biomass crop that can produce high yields on marginal lands. Moisture content is a highly relevant biomass quality trait with multiple impacts on efficiencies of harvest, transport, and storage. The dynamics of moisture content during senescence and overwinter ripening are determined by genotype × environment interactions. In this paper, unmanned aerial vehicle (UAV)-based remote sensing was used for high-throughput plant phenotyping (HTPP) of the moisture content dynamics during autumn and winter senescence of 14 contrasting hybrid types (progeny of M. sinensis x M. sinensis [M. sin x M. sin, eight types] and M. sinensis x M. sacchariflorus [M. sin x M. sac, six types]). The time series of moisture content was estimated using machine learning (ML) models and a range of vegetation indices (VIs) derived from UAV-based remote sensing. The most important VIs for moisture content estimation were selected by the recursive feature elimination (RFE) algorithm and were BNDVI, GDVI, and PSRI. The ML model transferability was high only when the moisture content was above 30%. The best ML model accuracy was achieved by combining VIs and categorical variables (5.6% of RMSE). This model was used for phenotyping senescence dynamics and identifying the stay-green (SG) trait of Miscanthus hybrids using the generalized additive model (GAM). Combining ML and GAM modeling, applied to time series of moisture content values estimated from VIs derived from multiple UAV flights, proved to be a powerful tool for HTPP

    Governance capacity and collaborative action in Hong Kong : the structure and dynamics of district level community building

    Get PDF
    published_or_final_versionPolitics and Public AdministrationMasterMaster of Public Administratio

    What makes efficient circularly polarised luminescence in the condensed phase: aggregation-induced circular dichroism and light emission

    Get PDF
    In this contribution, we conceptually present a new avenue to construction of molecular functional materials with high performance of circularly polarised luminescence (CPL) in the condensed phase. A molecule (1) containing luminogenic silole and chiral sugar moieties was synthesized and thoroughly characterized. In a solution of 1, no circular dichroism (CD) and fluorescence emission are observed, but upon molecular aggregation, both the CD and fluorescence are simultaneously turned on, showing aggregation-induced CD (AICD) and emission (AIE) effects. The AICD effect is supported by the fact that the molecules readily assemble into right-handed helical nanoribbons and superhelical ropes when aggregated. The AIE effect boosts the fluorescence quantum efficiency (ΦF) by 136 fold (ΦF, ∼0.6% in the solution versus ∼81.3% in the solid state), which surmounts the serious limitations of aggregation-caused quenching effect encountered by conventional luminescent materials. Time-resolved fluorescence study and theoretical calculation from first principles conclude that restriction of the low-frequency intramolecular motions is responsible for the AIE effect. The helical assemblies of 1 prefer to emit right-handed circularly polarised light and display large CPL dissymmetry factors (gem), whose absolute values are in the range of 0.08–0.32 and are two orders of magnitude higher than those of commonly reported organic materials. We demonstrate for the first time the use of a Teflon-based microfluidic technique for fabrication of the fluorescent pattern. This shows the highest gem of −0.32 possibly due to the enhanced assembling order in the confined microchannel environment. The CPL performance was preserved after more than half year storage under ambient conditions, revealing the excellent spectral stability. Computational simulation was performed to interpret how the molecules in the aggregates interact with each other at the molecular level. Our designed molecule represents the desired molecular functional material for generating efficient CPL in the solid state, and the current study shows the best results among the reported organic conjugated molecular systems in terms of emission efficiency, dissymmetry factor, and spectral stability

    Site impacts nutrient translocation efficiency in intraspecies and interspecies miscanthus hybrids on marginal lands

    Get PDF
    Miscanthus, a C4 perennial rhizomatous grass, is capable of growing in varied climates and soil types in Europe, including on marginal lands. It can produce high yields with low nutrient inputs when harvested after complete senescence. Senescence induction and rate depend on complex genetic, environmental, and management interactions. To explore these interactions, we analysed four miscanthus hybrids (two novel seed-based hybrids, GRC 3 [Miscanthus sinensis × sinensis] and GRC 14 [M. sacchariflorus × sinensis]; GRC 15, a novel M. sacchariflorus × sinensis clone; and GRC 9, a standard Miscanthus × giganteus clone) in Italy, Croatia, Germany and the UK. Over all trial locations and hybrids, the average aboveground biomass of the 3-year-old stands in August 2020 was 15 t DM ha−1 with nutrient contents of 7.6 mg N g−1 and 14.6 mg K g−1. As expected, delaying the harvest until spring reduced overall yield and nutrient contents (12 t DM ha−1, 3.3 mg N g−1, and 5.5 mg K g−1). At lower latitudes, the late-ripening M. sacchariflorus × sinensis GRC 14 and GRC 15 combined high yields with low nutrient contents. At the most elevated latitude location (UK), the early-ripening M. sinensis × sinensis combined high biomass yields with low nutrient offtakes. The clonal Miscanthus × giganteus with intermediate flowering and senescence attained similar low nutrient contents by spring harvest at all four locations. Seasonal changes in yield and nutrient levels analysed in this study provide: (1) a first step towards recommending hybrids for specific locations and end uses in Europe; (2) crucial data for determination of harvest time and practical steps in the valorization of biomass; and (3) key sustainability data for life cycle assessments. Identification of trade-offs resulting from genetic × environment × management interactions is critical for increasing sustainable biomass supply from miscanthus grown on marginal lands

    CALIOP Version 3 Data Products: A Comparison to Version 2

    Get PDF
    After launch we discovered that the CALIOP daytime measurements were subject to thermally induced beamdrift,and this caused the calibration to vary by as much as 30% during the course of a single daytime orbit segment. Using an algorithm developed by Powell et al.(2010), empirically derived correction factors are now computed in near realtime as a function of orbit elapsed time, and these are used to compensate for the beam wandering effects
    corecore