27 research outputs found

    Involvement of histone deacetylation in MORC2-mediated down-regulation of carbonic anhydrase IX

    Get PDF
    Carbonic anhydrase IX (CAIX) plays an important role in the growth and survival of tumor cells. MORC2 is a member of the MORC protein family. The MORC proteins contain a CW-type zinc finger domain and are predicted to have the function of regulating transcription, but no MORC2 target genes have been identified. Here we performed a DNA microarray hybridization and found CAIX mRNA to be down-regulated 8-fold when MORC2 was overexpressed. This result was further confirmed by northern and western blot analysis. Our results also showed that the protected region 4 (PR4) was important for the repression function of MORC2. Moreover, MORC2 decreased the acetylation level of histone H3 at the CAIX promoter. Meanwhile, trichostatin A (TSA) had an increasing effect on CAIX promoter activity. Among the six HDACs tested, histone deacetylase 4 (HDAC4) had a much more prominent effect on CAIX repression. ChIP and ChIP Re-IP assays showed that MORC2 and HDAC4 were assembled on the same region of the CAIX promoter. Importantly, we further confirmed that both proteins are simultaneously present in the PR4-binding complex. These results may contribute to understanding the molecular mechanisms of CAIX regulation

    Proteasomal Inhibition Attenuates Transcriptional Activity of Hypoxia-Inducible Factor 1 (HIF-1) via Specific Effect on the HIF-1α C-Terminal Activation Domain

    No full text
    The ubiquitin-proteasome pathway (UPP) is involved in regulation of multiple cellular processes. Hypoxia-inducible factor 1α (HIF-1α) is a prototypic target of the UPP and, as such, is stabilized under conditions of proteasomal inhibition. Using carbonic anhydrase IX (CAIX) and vascular endothelial growth factor (VEGF) expression as paradigmatic markers of HIF-1 activity, we found that proteasomal inhibitors (PI) abrogated hypoxia-induced CAIX expression in all cell lines tested and VEGF expression in two out of three. Mapping of the inhibitory effect identified the C-terminal activation domain (CAD) of HIF-1α as the primary target of PI. PI specifically inhibited the HIF-1α CAD despite activating the HIF-1α coactivator p300 and another p300 cysteine/histidine-rich domain 1-dependent transcription factor, STAT-2. Coimmunoprecipitation and glutathione S-transferase pull downs indicated that PI does not disrupt interactions between HIF-1α and p300. Mutational analysis failed to confirm involvement of sites of known or putative posttranslational modifications in regulation of HIF-1α CAD function by PI. Our data provide evidence for the counterintuitive hypothesis that inhibition of HIF-1 function could be responsible for at least some of the antitumor effects of proteasomal inhibition. Further studies of the mechanism of the PI-induced attenuation of HIF-1α will provide important, potentially novel insight into regulation of HIF-1 activity and possibly identify new targets for HIF-directed therapy
    corecore