11 research outputs found

    A Pharmaceutical Paradigm for Cardiovascular Composite Risk Assessment Using Novel Radiogenomics Risk Predictors in Precision Explainable Artificial Intelligence Framework: Clinical Trial Tool

    Get PDF
    Cardiovascular disease (CVD) is challenging to diagnose and treat since symptoms appear late during the progression of atherosclerosis. Conventional risk factors alone are not always sufficient to properly categorize at-risk patients, and clinical risk scores are inadequate in predicting cardiac events. Integrating genomic-based biomarkers (GBBM) found in plasma/serum samples with novel non-invasive radiomics-based biomarkers (RBBM) such as plaque area, plaque burden, and maximum plaque height can improve composite CVD risk prediction in the pharmaceutical paradigm. These biomarkers consider several pathways involved in the pathophysiology of atherosclerosis disease leading to CVD.This review proposes two hypotheses: (i) The composite biomarkers are strongly correlated and can be used to detect the severity of CVD/Stroke precisely, and (ii) an explainable artificial intelligence (XAI)-based composite risk CVD/Stroke model with survival analysis using deep learning (DL) can predict in preventive, precision, and personalized (aiP3) framework benefiting the pharmaceutical paradigm.The PRISMA search technique resulted in 214 studies assessing composite biomarkers using radiogenomics for CVD/Stroke. The study presents a XAI model using AtheroEdgeTM 4.0 to determine the risk of CVD/Stroke in the pharmaceutical framework using the radiogenomics biomarkers.Our observations suggest that the composite CVD risk biomarkers using radiogenomics provide a new dimension to CVD/Stroke risk assessment. The proposed review suggests a unique, unbiased, and XAI model based on AtheroEdgeTM 4.0 that can predict the composite risk of CVD/Stroke using radiogenomics in the pharmaceutical paradigm

    A Pharmaceutical Paradigm for Cardiovascular Composite Risk Assessment Using Novel Radiogenomics Risk Predictors in Precision Explainable Artificial Intelligence Framework: Clinical Trial Tool

    Get PDF
    Background: Cardiovascular disease (CVD) is challenging to diagnose and treat since symptoms appear late during the progression of atherosclerosis. Conventional risk factors alone are not always sufficient to properly categorize at-risk patients, and clinical risk scores are inadequate in predicting cardiac events. Integrating genomic-based biomarkers (GBBM) found in plasma/serum samples with novel non-invasive radiomics-based biomarkers (RBBM) such as plaque area, plaque burden, and maximum plaque height can improve composite CVD risk prediction in the pharmaceutical paradigm. These biomarkers consider several pathways involved in the pathophysiology of atherosclerosis disease leading to CVD. Objective: This review proposes two hypotheses: (i) The composite biomarkers are strongly correlated and can be used to detect the severity of CVD/Stroke precisely, and (ii) an explainable artificial intelligence (XAI)-based composite risk CVD/Stroke model with survival analysis using deep learning (DL) can predict in preventive, precision, and personalized (aiP 3 ) framework benefiting the pharmaceutical paradigm. Method: The PRISMA search technique resulted in 214 studies assessing composite biomarkers using radiogenomics for CVD/Stroke. The study presents a XAI model using AtheroEdge TM 4.0 to determine the risk of CVD/Stroke in the pharmaceutical framework using the radiogenomics biomarkers. Conclusions: Our observations suggest that the composite CVD risk biomarkers using radiogenomics provide a new dimension to CVD/Stroke risk assessment. The proposed review suggests a unique, unbiased, and XAI model based on AtheroEdge TM 4.0 that can predict the composite risk of CVD/Stroke using radiogenomics in the pharmaceutical paradigm

    COVLIAS 3.0: cloud-based quantized hybrid UNet3+ deep learning for COVID-19 lesion detection in lung computed tomography

    Get PDF
    Background and noveltyWhen RT-PCR is ineffective in early diagnosis and understanding of COVID-19 severity, Computed Tomography (CT) scans are needed for COVID diagnosis, especially in patients having high ground-glass opacities, consolidations, and crazy paving. Radiologists find the manual method for lesion detection in CT very challenging and tedious. Previously solo deep learning (SDL) was tried but they had low to moderate-level performance. This study presents two new cloud-based quantized deep learning UNet3+ hybrid (HDL) models, which incorporated full-scale skip connections to enhance and improve the detections.MethodologyAnnotations from expert radiologists were used to train one SDL (UNet3+), and two HDL models, namely, VGG-UNet3+ and ResNet-UNet3+. For accuracy, 5-fold cross-validation protocols, training on 3,500 CT scans, and testing on unseen 500 CT scans were adopted in the cloud framework. Two kinds of loss functions were used: Dice Similarity (DS) and binary cross-entropy (BCE). Performance was evaluated using (i) Area error, (ii) DS, (iii) Jaccard Index, (iii) Bland–Altman, and (iv) Correlation plots.ResultsAmong the two HDL models, ResNet-UNet3+ was superior to UNet3+ by 17 and 10% for Dice and BCE loss. The models were further compressed using quantization showing a percentage size reduction of 66.76, 36.64, and 46.23%, respectively, for UNet3+, VGG-UNet3+, and ResNet-UNet3+. Its stability and reliability were proved by statistical tests such as the Mann–Whitney, Paired t-Test, Wilcoxon test, and Friedman test all of which had a p < 0.001.ConclusionFull-scale skip connections of UNet3+ with VGG and ResNet in HDL framework proved the hypothesis showing powerful results improving the detection accuracy of COVID-19

    A Powerful Paradigm for Cardiovascular Risk Stratification Using Multiclass, Multi-Label, and Ensemble-Based Machine Learning Paradigms: A Narrative Review

    No full text
    Background and Motivation: Cardiovascular disease (CVD) causes the highest mortality globally. With escalating healthcare costs, early non-invasive CVD risk assessment is vital. Conventional methods have shown poor performance compared to more recent and fast-evolving Artificial Intelligence (AI) methods. The proposed study reviews the three most recent paradigms for CVD risk assessment, namely multiclass, multi-label, and ensemble-based methods in (i) office-based and (ii) stress-test laboratories. Methods: A total of 265 CVD-based studies were selected using the preferred reporting items for systematic reviews and meta-analyses (PRISMA) model. Due to its popularity and recent development, the study analyzed the above three paradigms using machine learning (ML) frameworks. We review comprehensively these three methods using attributes, such as architecture, applications, pro-and-cons, scientific validation, clinical evaluation, and AI risk-of-bias (RoB) in the CVD framework. These ML techniques were then extended under mobile and cloud-based infrastructure. Findings: Most popular biomarkers used were office-based, laboratory-based, image-based phenotypes, and medication usage. Surrogate carotid scanning for coronary artery risk prediction had shown promising results. Ground truth (GT) selection for AI-based training along with scientific and clinical validation is very important for CVD stratification to avoid RoB. It was observed that the most popular classification paradigm is multiclass followed by the ensemble, and multi-label. The use of deep learning techniques in CVD risk stratification is in a very early stage of development. Mobile and cloud-based AI technologies are more likely to be the future. Conclusions: AI-based methods for CVD risk assessment are most promising and successful. Choice of GT is most vital in AI-based models to prevent the RoB. The amalgamation of image-based strategies with conventional risk factors provides the highest stability when using the three CVD paradigms in non-cloud and cloud-based frameworks

    Cardiovascular disease detection using machine learning and carotid/femoral arterial imaging frameworks in rheumatoid arthritis patients

    No full text
    The study proposes a novel machine learning (ML) paradigm for cardiovascular disease (CVD) detection in individuals at medium to high cardiovascular risk using data from a Greek cohort of 542 individuals with rheumatoid arthritis, or diabetes mellitus, and/or arterial hypertension, using conventional or office-based, laboratory-based blood biomarkers and carotid/femoral ultrasound image-based phenotypes. Two kinds of data (CVD risk factors and presence of CVD-defined as stroke, or myocardial infarction, or coronary artery syndrome, or peripheral artery disease, or coronary heart disease) as ground truth, were collected at two-time points: (i) at visit 1 and (ii) at visit 2 after 3 years. The CVD risk factors were divided into three clusters (conventional or office-based, laboratory-based blood biomarkers, carotid ultrasound image-based phenotypes) to study their effect on the ML classifiers. Three kinds of ML classifiers (Random Forest, Support Vector Machine, and Linear Discriminant Analysis) were applied in a two-fold cross-validation framework using the data augmented by synthetic minority over-sampling technique (SMOTE) strategy. The performance of the ML classifiers was recorded. In this cohort with overall 46 CVD risk factors (covariates) implemented in an online cardiovascular framework, that requires calculation time less than 1 s per patient, a mean accuracy and area-under-the-curve (AUC) of 98.40% and 0.98 (p < 0.0001) for CVD presence detection at visit 1, and 98.39% and 0.98 (p < 0.0001) at visit 2, respectively. The performance of the cardiovascular framework was significantly better than the classical CVD risk score. The ML paradigm proved to be powerful for CVD prediction in individuals at medium to high cardiovascular risk

    Artificial intelligence-based preventive, personalized and precision medicine for cardiovascular disease/stroke risk assessment in rheumatoid arthritis patients: a narrative review

    No full text
    The challenges associated with diagnosing and treating cardiovascular disease (CVD)/Stroke in Rheumatoid arthritis (RA) arise from the delayed onset of symptoms. Existing clinical risk scores are inadequate in predicting cardiac events, and conventional risk factors alone do not accurately classify many individuals at risk. Several CVD biomarkers consider the multiple pathways involved in the development of atherosclerosis, which is the primary cause of CVD/Stroke in RA. To enhance the accuracy of CVD/Stroke risk assessment in the RA framework, a proposed approach involves combining genomic-based biomarkers (GBBM) derived from plasma and/or serum samples with innovative non-invasive radiomic-based biomarkers (RBBM), such as measurements of synovial fluid, plaque area, and plaque burden. This review presents two hypotheses: (i) RBBM and GBBM biomarkers exhibit a significant correlation and can precisely detect the severity of CVD/Stroke in RA patients. (ii) Artificial Intelligence (AI)-based preventive, precision, and personalized (aiP3) CVD/Stroke risk AtheroEdge™ model (AtheroPoint™, CA, USA) that utilizes deep learning (DL) to accurately classify the risk of CVD/stroke in RA framework. The authors conducted a comprehensive search using the PRISMA technique, identifying 153 studies that assessed the features/biomarkers of RBBM and GBBM for CVD/Stroke. The study demonstrates how DL models can be integrated into the AtheroEdge™–aiP3 framework to determine the risk of CVD/Stroke in RA patients. The findings of this review suggest that the combination of RBBM with GBBM introduces a new dimension to the assessment of CVD/Stroke risk in the RA framework. Synovial fluid levels that are higher than normal lead to an increase in the plaque burden. Additionally, the review provides recommendations for novel, unbiased, and pruned DL algorithms that can predict CVD/Stroke risk within a RA framework that is preventive, precise, and personalized

    Artificial intelligence for cardiovascular disease risk assessment in personalised framework: a scoping reviewResearch in context

    No full text
    Summary: Background: The field of precision medicine endeavors to transform the healthcare industry by advancing individualised strategies for diagnosis, treatment modalities, and predictive assessments. This is achieved by utilizing extensive multidimensional biological datasets encompassing diverse components, such as an individual's genetic makeup, functional attributes, and environmental influences. Artificial intelligence (AI) systems, namely machine learning (ML) and deep learning (DL), have exhibited remarkable efficacy in predicting the potential occurrence of specific cancers and cardiovascular diseases (CVD). Methods: We conducted a comprehensive scoping review guided by the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) framework. Our search strategy involved combining key terms related to CVD and AI using the Boolean operator AND. In August 2023, we conducted an extensive search across reputable scholarly databases including Google Scholar, PubMed, IEEE Xplore, ScienceDirect, Web of Science, and arXiv to gather relevant academic literature on personalised medicine for CVD. Subsequently, in January 2024, we extended our search to include internet search engines such as Google and various CVD websites. These searches were further updated in March 2024. Additionally, we reviewed the reference lists of the final selected research articles to identify any additional relevant literature. Findings: A total of 2307 records were identified during the process of conducting the study, consisting of 564 entries from external sites like arXiv and 1743 records found through database searching. After 430 duplicate articles were eliminated, 1877 items that remained were screened for relevancy. In this stage, 1241 articles remained for additional review after 158 irrelevant articles and 478 articles with insufficient data were removed. 355 articles were eliminated for being inaccessible, 726 for being written in a language other than English, and 281 for not having undergone peer review. Consequently, 121 studies were deemed suitable for inclusion in the qualitative synthesis. At the intersection of CVD, AI, and precision medicine, we found important scientific findings in our scoping review. Intricate pattern extraction from large, complicated genetic datasets is a skill that AI algorithms excel at, allowing for accurate disease diagnosis and CVD risk prediction. Furthermore, these investigations have uncovered unique genetic biomarkers linked to CVD, providing insight into the workings of the disease and possible treatment avenues. The construction of more precise predictive models and personalised treatment plans based on the genetic profiles of individual patients has been made possible by the revolutionary advancement of CVD risk assessment through the integration of AI and genomics. Interpretation: The systematic methodology employed ensured the thorough examination of available literature and the inclusion of relevant studies, contributing to the robustness and reliability of the study's findings. Our analysis stresses a crucial point in terms of the adaptability and versatility of AI solutions. AI algorithms designed in non-CVD domains such as in oncology, often include ideas and tactics that might be modified to address cardiovascular problems. Funding: No funding received

    Vascular Implications of COVID-19: Role of Radiological Imaging, Artificial Intelligence, and Tissue Characterization: A Special Report

    No full text
    The SARS-CoV-2 virus has caused a pandemic, infecting nearly 80 million people worldwide, with mortality exceeding six million. The average survival span is just 14 days from the time the symptoms become aggressive. The present study delineates the deep-driven vascular damage in the pulmonary, renal, coronary, and carotid vessels due to SARS-CoV-2. This special report addresses an important gap in the literature in understanding (i) the pathophysiology of vascular damage and the role of medical imaging in the visualization of the damage caused by SARS-CoV-2, and (ii) further understanding the severity of COVID-19 using artificial intelligence (AI)-based tissue characterization (TC). PRISMA was used to select 296 studies for AI-based TC. Radiological imaging techniques such as magnetic resonance imaging (MRI), computed tomography (CT), and ultrasound were selected for imaging of the vasculature infected by COVID-19. Four kinds of hypotheses are presented for showing the vascular damage in radiological images due to COVID-19. Three kinds of AI models, namely, machine learning, deep learning, and transfer learning, are used for TC. Further, the study presents recommendations for improving AI-based architectures for vascular studies. We conclude that the process of vascular damage due to COVID-19 has similarities across vessel types, even though it results in multi-organ dysfunction. Although the mortality rate is ~2% of those infected, the long-term effect of COVID-19 needs monitoring to avoid deaths. AI seems to be penetrating the health care industry at warp speed, and we expect to see an emerging role in patient care, reduce the mortality and morbidity rate
    corecore