31 research outputs found

    Rif1 S-acylation mediates DNA double-strand break repair at the inner nuclear membrane

    Get PDF
    Rif1 is involved in telomere homeostasis, DNA replication timing, and DNA double-strand break (DSB) repair pathway choice from yeast to human. The molecular mechanisms that enable Rif1 to fulfill its diverse roles remain to be determined. Here, we demonstrate that Rif1 is S-acylated within its conserved N-terminal domain at cysteine residues C466 and C473 by the DHHC family palmitoyl acyltransferase Pfa4. Rif1 S-acylation facilitates the accumulation of Rif1 at DSBs, the attenuation of DNA end-resection, and DSB repair by non-homologous end-joining (NHEJ). These findings identify S-acylation as a posttranslational modification regulating DNA repair. S-acylated Rif1 mounts a localized DNA-damage response proximal to the inner nuclear membrane, revealing a mechanism of compartmentalized DSB repair pathway choice by sequestration of a fatty acylated repair factor at the inner nuclear membrane

    Reconstitution of human hypoxia inducible factor HIF-1 in yeast: A simple in vivo system to identify and characterize HIF-1 alpha effectors

    No full text
    Hypoxia inducible factor I (HIF-1), the master regulator of hypoxia-activated genes, is involved in many diseases and is a valid drug target. In order to develop a simple and genetically tractable in vivo system for HIF-1 analysis, we tested the inducible expression of both human HIF-1 subunits (HIF-1 alpha and ARNT) in the yeast Saccharomyces cerevisiae and showed the formation of transcriptionally active HIF-1. The use of this system for the identification and characterization of HIF-1 effectors was first validated by showing that two chemical Hsp90 inhibitors, geldanamycin and radicicol, impaired the activity of HIF-1 in yeast. By applying this system in mutant yeast strains. we then identified Hsp90 co-chaperones, which were required for HIF-1 activity. Furthermore, using yeast strains co-expressing truncated forms of HIF-1 alpha with ARNT or both HIF-1 alpha and ARNT, we characterized fragments of HIF-1 alpha that acted as dominant negative mutants and suppressed HIF-1 activity. (c) 2006 Elsevier Inc. All rights reserved

    Oxygen-dependent secretion of a bioactive hepcidin-GFP chimera

    No full text
    Hepcidin, a hepatic hormone, regulates serum iron levels by controlling both intestinal iron absorption and iron release from macrophages. Although transcription of hepcidin is controlled by diverse stimuli, it remains elusive if post-transcriptional steps of its production are also regulated. To address this issue, GFP was fused to the C-terminus of hepcidin and the chimeric hepcidin-GFP protein was expressed in hepatoma Huh7 cells. Expression and secretion of hepcidin-GFP were analyzed by fluorescence microscopy or western blotting and its activity was assessed by in vitro biological assays. Transient over-expression of hepcidin-GFP resulted in production and secretion of premature forms. On the other hand, stable low-level expression led to synthesis and secretion of a properly matured hepcidin-GFP. This form was biologically active since it affected appropriately the levels of IRP2 and ferritin in human THP1 monocytes and targeted ferroportin in mouse J774 macrophages. Treatment of hepcidin-GFP expressing cells with hypoxia (0.1% O-2) altered the subcellular distribution of pro-hepcidin-GFP and significantly reduced the secretion of mature hepcidin-GFP. Our hepcidin-GFP expression system allows the investigation of post-transcriptional processing of hepcidin and implicates hypoxia in its secretion control. (c) 2013 Elsevier Inc. All rights reserved

    Anti-apoptotic and antioxidant activities of the mitochondrial estrogen receptor beta in n2a neuroblastoma cells

    No full text
    Estrogens are steroid hormones that play a crucial role in the regulation of the reproductive and non-reproductive system physiology. Among non-reproductive systems, the nervous system is mainly affected by estrogens due to their antioxidant, anti-apoptotic, and anti-inflammatory activities, which are mediated by membranous and nuclear estrogen receptors, and also by non-estrogen receptor-associated estrogen actions. Neuronal viability and functionality are also associated with the maintenance of mitochondrial functions. Recently, the localization of estrogen receptors, especially estrogen receptor beta, in the mitochondria of many types of neuronal cells is documented, indicating the direct involvement of the mitochondrial estrogen receptor beta (mtERβ) in the maintenance of neuronal physiology. In this study, cell lines of N2A cells stably overexpressing a mitochondrialtargeted estrogen receptor beta were generated and further analyzed to study the direct involvement of mtERβ in estrogen neuroprotective antioxidant and anti-apoptotic actions. Results from this study revealed that the presence of estrogen receptor beta in mitochondria render N2A cells more resistant to staurosporine-and H2O2-induced apoptotic stimuli, as indicated by the reduced activation of caspase9 and-3, the increased cell viability, the increased ATP production, and the increased resistance to mitochondrial impairment in the presence or absence of 17-β estradiol (E2). Thus, the direct involvement of mtERβ in antioxidant and anti-apoptotic activities is documented, rendering mtERβ a promising therapeutic target for mitochondrial dysfunction-associated degenerative diseases. © 2021 by the authors. Licensee MDPI, Basel, Switzerland

    Apoptotic, Anti-Inflammatory Activities and Interference with the Glucocorticoid Receptor Signaling of Fractions from Pistacia lentiscus L. var. chia Leaves

    No full text
    In this study acetonic extracts of leaves of Pistacia lentiscus L. var. chia (mastiha tree) grown in the south as well as in the north Chios Greek island were isolated and further fractionated to give three different polarity fractions: apolar, medium-polar, and polar. The isolated fractions were assessed as regards their main composition, cytotoxic, anti-inflammatory activities, and interference with the glucocorticoid receptor (GR) signaling, applying cytotoxic assay, luciferase assays, and Western blot analysis of apoptosis-, energy-, and inflammation-associated molecules. Differences in cell viability have been detected among different polarity leaf fractions as well as among fractions of different plant origin with polar fractions showing the highest cytotoxicity. Fractions-induced anti-inflammatory activities and suppressive effects on the dexamethasone (DEX)-induced GR transcriptional activation were unveiled. The partition protocol of leaves fractions applied uncovers the enhanced glucocorticoid-associated biological activities of the medium-polar fractions, which may be associated with their enrichment in the triterpenoids that showed structural similarity with the glucocorticoids. A reduction in GR protein levels is observed by the fraction which is shown to be associated with the medium polar-induced proteolytic degradation of the receptor. In addition, the enhanced cytotoxic, anti-inflammatory, and potential anti-glycemic activities of the fractions from the Southern P. lentiscus L. that exclusively produce the mastiha resin, is revealed, indicating that leaves fractions from mastiha tree, similarly to mastiha tree resin, may have the potential to be further analyzed for their potent applications in the pharmaceutical cosmetic and nutraceutical fields. © 2022 by the authors. Licensee MDPI, Basel, Switzerland

    Potential dissociative glucocorticoid receptor activity for protopanaxadiol and protopanaxatriol

    No full text
    �Glucocorticoids are steroid hormones that regulate inflammation, growth, metabolism, and apoptosis via their cognate receptor, the glucocorticoid receptor (GR). GR, acting mainly as a transcription factor, activates or represses the expression of a large number of target genes, among them, many genes of anti-inflammatory and pro-inflammatory molecules, respectively. Transrepression activity of glucocorticoids also accounts for their anti-inflammatory activity, rendering them the most widely prescribed drug in medicine. However, chronic and high-dose use of glucocorticoids is accompanied with many undesirable side effects, attributed predominantly to GR transactivation activity. Thus, there is a high need for selective GR agonist, capable of dissociating transrepression from transactivation activity. Protopanaxadiol and protopanaxatriol are triterpenoids that share structural and functional similarities with glucocorticoids. The molecular mechanism of their actions is unclear. In this study applying induced-fit docking analysis, luciferase assay, immunofluorescence, and Western blot analysis, we showed that protopanaxadiol and more effectively protopanaxatriol are capable of binding to GR to activate its nuclear translocation, and to suppress the nuclear factor-kappa beta activity in GR-positive HeLa and HEK293 cells, but not in GR-low level COS-7 cells. Interestingly, no transactivation activity was observed, whereas suppression of the dexamethasone-induced transactivation of GR and induction of apoptosis in HeLa and HepG2 cells were observed. Thus, our results indicate that protopanaxadiol and protopanaxatriol could be considered as potent and selective GR agonist. © 2018 by the authors. Licensee MDPI, Basel, Switzerland

    Neurotoxic effects of aluminum are associated with its interference with estrogen receptors signaling

    No full text
    Aluminum compounds have been observed in various brain regions, and their accumulation has been associated with many neurodegenerative disorders. Neurotoxic effects of aluminum are attributed to reactive oxygen species generation, induction of apoptosis and inflammatory reactions activation. Metalloestrogen activity of aluminum has also been linked to breast cancer progression and metastasis. In this study, taking into account the anti-apoptotic and anti-oxidant activities of estrogens in neuronal cells, which are mediated by estrogen receptors, the possible estrogenic activity of aluminum in SH-SY5Y neuroblastoma cells was studied. Our results showed that aluminum in the form of aluminum chlorohydrate (ACH) exhibited no effect on estrogen receptors transcriptional activation, and differential effect on estrogen receptor alpha (ERα) and estrogen receptor beta (ERβ) protein levels. ACH caused reduction in ERβ protein levels, and increase in its mitochondrial localization. ACH-induced reduction in ERβ protein level may be linked, at least in part, to the ACH-induced increase in ERα protein level. This statement is based on our observations showing aluminum-induced reduction in the E2-induced increase in ERα S118 phosphorylation, in MCF-7 and SH-SH5Y cells. Phosphorylation at S118 residue is known to be associated with inhibition of the ubiquitin-induced proteolytic degradation of ERα, leading to its accumulation. Since it is known that ERα negatively regulate ERβ expression, increase in ERα, may contribute to reduction in ERβ levels and subsequent weakening of its anti-apoptotic and anti-oxidant activity, justified by the observed reduction in procaspase 9, mitochondrial cytochrome c, Bcl-2, Bcl-xL and mitochondrial thioredoxin protein level, as well as by the increase in proapoptotic BAX level, in ACH treated SH-SY5Y cells. In addition, increase in mitochondrial ERβ localization may also trigger mitochondrial metabolism, suppress biosynthetic process of gluconeogenesis, as indicated by the observed reduction in the phosphoenolpyruvate carboxykinase protein level, and eventually lead to increase in reactive oxygen species (ROS) generation, known to be implicated in aluminum induced neurodegeneration. This statement was verified by the observed ACH–induced increase in ERβ mitochondrial localization, induction of the mitochondrial membrane depolarization and increase in ROS production, in neuronal-like differentiated SH-SY5Y cells. © 2020 Elsevier B.V

    Apoptotic, Anti-Inflammatory Activities and Interference with the Glucocorticoid Receptor Signaling of Fractions from Pistacia lentiscus L. var. chia Leaves

    No full text
    In this study acetonic extracts of leaves of Pistacia lentiscus L. var. chia (mastiha tree) grown in the south as well as in the north Chios Greek island were isolated and further fractionated to give three different polarity fractions: apolar, medium-polar, and polar. The isolated fractions were assessed as regards their main composition, cytotoxic, anti-inflammatory activities, and interference with the glucocorticoid receptor (GR) signaling, applying cytotoxic assay, luciferase assays, and Western blot analysis of apoptosis-, energy-, and inflammation-associated molecules. Differences in cell viability have been detected among different polarity leaf fractions as well as among fractions of different plant origin with polar fractions showing the highest cytotoxicity. Fractions-induced anti-inflammatory activities and suppressive effects on the dexamethasone (DEX)-induced GR transcriptional activation were unveiled. The partition protocol of leaves fractions applied uncovers the enhanced glucocorticoid-associated biological activities of the medium-polar fractions, which may be associated with their enrichment in the triterpenoids that showed structural similarity with the glucocorticoids. A reduction in GR protein levels is observed by the fraction which is shown to be associated with the medium polar-induced proteolytic degradation of the receptor. In addition, the enhanced cytotoxic, anti-inflammatory, and potential anti-glycemic activities of the fractions from the Southern P. lentiscus L. that exclusively produce the mastiha resin, is revealed, indicating that leaves fractions from mastiha tree, similarly to mastiha tree resin, may have the potential to be further analyzed for their potent applications in the pharmaceutical cosmetic and nutraceutical fields

    The nuclear oncogene SET controls DNA repair by KAP1 and HP1 retention to chromatin

    No full text
    Cells experience damage from exogenous and endogenous sources that endanger genome stability. Several cellular pathways have evolved to detect DNA damage and mediate its repair. Although many proteins have been implicated in these processes, only recent studies have revealed how they operate in the context of high-ordered chromatin structure. Here, we identify the nuclear oncogene SET (I2PP2A) as a modulator of DNA damage response (DDR) and repair in chromatin surrounding double-strand breaks (DSBs). We demonstrate that depletion of SET increases DDR and survival in the presence of radiomimetic drugs, while overexpression of SET impairs DDR and homologous recombination (HR)-mediated DNA repair. SET interacts with the Kruppel-associated box (KRAB)-associated co-repressor KAP1, and its overexpression results inthe sustained retention of KAP1 and Heterochromatin protein 1 (HP1) on chromatin. Our results are consistent with a model in which SET-mediated chromatin compaction triggers an inhibition of DNA end resection and HR. © 2015 The Authors
    corecore