19 research outputs found
A computational model for anti-cancer drug sensitivity prediction
Various methods have been developed to build models for predicting drug response in cancer treatment based on patient data through machine learning algorithms. Drug prediction models can offer better patient data classification, optimising sensitivity identification in cancer therapy for suitable drugs. In this paper, a computational model based on Deep Neural Networks has been designed for prediction of anti-cancer drug response based on genetic expression data using publicly available drug profiling datasets from Cancer Cell Line Encyclopedia (CCLE). The model consists of several parts, including continuous drug response prediction, discretization and a drug sensitivity result output. Regularization and compression of neuron connections is also implemented to make the model compact and efficient, outperforming other widely used algorithms, such as elastic net (EN), random forest (RF), support vector regression (SVR) and simple artificial neural network (ANN) in sensitivity analysis and predictive accuracy
Classification of nucleic acid amplification on ISFET arrays using spectrogram-based neural networks.
The COVID-19 pandemic has highlighted a significant research gap in the field of molecular diagnostics. This has brought forth the need for AI-based edge solutions that can provide quick diagnostic results whilst maintaining data privacy, security and high standards of sensitivity and specificity. This paper presents a novel proof-of-concept method to detect nucleic acid amplification using ISFET sensors and deep learning. This enables the detection of DNA and RNA on a low-cost and portable lab-on-chip platform for identifying infectious diseases and cancer biomarkers. We show that by using spectrograms to transform the signal to the time-frequency domain, image processing techniques can be applied to achieve the reliable classification of the detected chemical signals. Transformation to spectrograms is beneficial as it makes the data compatible with 2D convolutional neural networks and helps gain significant performance improvement over neural networks trained on the time domain data. The trained network achieves an accuracy of 84% with a size of 30kB making it suitable for deployment on edge devices. This facilitates a new wave of intelligent lab-on-chip platforms that combine microfluidics, CMOS-based chemical sensing arrays and AI-based edge solutions for more intelligent and rapid molecular diagnostics
Handheld ISFET Lab-on-Chip detection of TMPRSS2-ERG and AR mRNA for prostate cancer prognostics
Ion-sensitive field-effect transistors (ISFETs) in combination with unmodified complementary metal oxide semiconductors present a point-of-care platform for clinical diagnostics and prognostics. This work illustrates the sensitive and specific detection of two circulating mRNA markers for prostate cancer, the androgen receptor and the TMPRSS2-ERG fusion using a target-specific loop-mediated isothermal amplification method. TMPRSS2-ERG and androgen receptor RNA were detected down to 3x10 1 and 5x10 1 copies respectively in under 30 minutes. Administration of these assays onto the ISFET Lab-on-chip device was successful and the specificity of each marker was corroborated with mRNA extracted from prostate cancer cell lines
Detection of YAP1 and AR-V7 mRNA for Prostate Cancer prognosis using an ISFET Lab-On-Chip platform
AbstractProstate cancer (PCa) is the second most common cause of male cancer-related death worldwide. The gold standard of treatment for advanced PCa is androgen deprivation therapy (ADT). However, eventual failure of ADT is common and leads to lethal metastatic castration resistant PCa (mCRPC). As such, the detection of relevant biomarkers in the blood for drug resistance in mCRPC patients could lead to personalized treatment options. mRNA detection is often limited by the low specificity of qPCR assays which are restricted to specialised laboratories. Here, we present a novel reversetranscription loop-mediated isothermal amplification (RT-LAMP) assay and have demonstrated its capability for sensitive detection of AR-V7 and YAP1 RNA (3×101 RNA copies per reaction). This work presents a foundation for the detection of circulating mRNA in PCa on a non-invasive Lab-on-chip (LoC) device for use at point-of-care. This technique was implemented onto a Lab-on-Chip platform integrating an array of chemical sensors (ion-sensitive field-effect transistors - ISFETs) for real-time detection of RNA. Detection of RNA presence was achieved through the translation of chemical signals into electrical readouts. Validation of this technique was conducted with rapid detection (<15 min) of extracted RNA from prostate cancer cell lines 22Rv1s and DU145s.</jats:p
Deregulation of methylation of transcribed-ultra conserved regions in colorectal cancer and their value for detection of adenomas and adenocarcinomas
Expression of Transcribed Ultraconserved Regions (T-UCRs) is often deregulated in cancer. The present study assesses the expression and methylation of three T-UCRs (Uc160, Uc283 and Uc346) in colorectal cancer (CRC) and explores the potential of T-UCR methylation in circulating DNA for the detection of adenomas and adenocarcinomas. Expression levels of Uc160, Uc283 and Uc346 were lower in neoplastic tissues from 64 CRC patients (statistically significant for Uc160, p<0.001), compared to non-malignant tissues, while methylation levels displayed the inverse pattern (p<0.001, p=0.001 and p=0.004 respectively). In colon cancer cell lines, overexpression of Uc160 and Uc346 led to increased proliferation and migration rates. Methylation levels of Uc160 in plasma of 50 CRC, 59 adenoma patients, 40 healthy subjects and 12 patients with colon inflammation or diverticulosis predicted the presence of CRC with 35% sensitivity and 89% specificity (p=0.016), while methylation levels of the combination of all three T-UCRs resulted in 45% sensitivity and 74.3% specificity (p=0.013). In conclusion, studied T-UCRs’ expression and methylation status are deregulated in CRC while Uc160 and Uc346 appear to have a complicated role in CRC progression. Moreover their methylation status appears a promising non-invasive screening test for CRC, provided that the sensitivity of the assay is improved
Detection of YAP1 and AR-V7 mRNA for prostate cancer prognosis using an ISFET lab-on-chip platform
Prostate cancer (PCa) is the second most common cause of male cancer-related death worldwide. The gold standard of treatment for advanced PCa is androgen deprivation therapy (ADT). However, eventual failure of ADT is common and leads to lethal metastatic castration-resistant PCa. As such, the detection of relevant biomarkers in the blood for drug resistance in metastatic castration-resistant PCa patients could lead to personalized treatment options. mRNA detection is often limited by the low specificity of qPCR assays which are restricted to specialized laboratories. Here, we present a novel reverse-transcription loop-mediated isothermal amplification assay and have demonstrated its capability for sensitive detection of AR-V7 and YAP1 RNA (3 × 101 RNA copies per reaction). This work presents a foundation for the detection of circulating mRNA in PCa on a non-invasive lab-on-chip device for use at the point-of-care. This technique was implemented onto a lab-on-chip platform integrating an array of chemical sensors (ion-sensitive field-effect transistors) for real-time detection of RNA. Detection of RNA presence was achieved through the translation of chemical signals into electrical readouts. Validation of this technique was conducted with rapid detection (<15 min) of extracted RNA from prostate cancer cell lines 22Rv1s and DU145s
A novel hotspot specific isothermal amplification method for detection of the common PIK3CA p.H1047R breast cancer mutation
Breast cancer (BC) is a common cancer in women worldwide. Despite advances in treatment, up to 30% of women eventually relapse and die of metastatic breast cancer. Liquid biopsy analysis of circulating cell-free DNA fragments in the patients’ blood can monitor clonality and evolving mutations as a surrogate for tumour biopsy. Next generation sequencing platforms and digital droplet PCR can be used to profile circulating tumour DNA from liquid biopsies; however, they are expensive and time consuming for clinical use. Here, we report a novel strategy with proof-of-concept data that supports the usage of loop-mediated isothermal amplification (LAMP) to detect PIK3CA c.3140 A > G (H1047R), a prevalent BC missense mutation that is attributed to BC tumour growth. Allele-specific primers were designed and optimized to detect the p.H1047R variant following the USS-sbLAMP method. The assay was developed with synthetic DNA templates and validated with DNA from two breast cancer cell-lines and two patient tumour tissue samples through a qPCR instrument and finally piloted on an ISFET enabled microchip. This work sets a foundation for BC mutational profiling on a Lab-on-Chip device, to help the early detection of patient relapse and to monitor efficacy of systemic therapies for personalised cancer patient management
Expression of intracellular components of the NF-κB alternative pathway (NF-κB2, RelB, NIK and Bcl3) is associated with clinical outcome of NSCLC patients
A growing number of studies has shed light on the role of the NF-κΒ in non-small-cell lung cancer (NSCLC). To address the significance of major effectors of the NF-κΒ alternative pathway, we investigated the relationship between NF-κΒ2, RelB, NIK and Bcl3 expression (mRNA and protein) and the clinical outcome of NSCLC patients. NF-κΒ2, RelB, NIK and Bcl3 protein expression levels were assessed by immunohistochemistry in tissue samples from 151 NSCLC patients who had curative resection. mRNA levels were also evaluated in 69 patients using quantitative real-time PCR. Although all studied proteins were overexpressed in NSCLC (P < 0.001 for all), only RelB mRNA levels were strongly increased in cancerous specimens compared to tumor-adjacent non-neoplastic tissues (P = 0.009). Moreover, NF-κB2, RelB and Bcl3 expression was associated with overall survival (OS). In particular, cytoplasmic and mRNA expression of RelB was related to 5-year OS (P = 0.014 and P = 0.006, respectively). Multivariate analysis also showed that Bcl3 expression (nuclear and cytoplasmic) was associated with increased 5-year OS (P = 0.002 and P = 0.036, respectively). In addition, higher Bcl3 mRNA levels were associated with inferior OS in stages I & II and improved OS in stages III and IV after 5-year follow-up (P = 0.004 and P = 0.001, respectively). Furthermore, stage I patients with lower NF-κB2 mRNA levels had better 5-year survival in univariate and multivariate analysis (P = 0.031 and P = 0.028, respectively). Interestingly, RelB expression (cytoplasmic and mRNA) was inversely associated with relapse rates (P = 0.027 and P = 0.015, respectively), while low NIK cytoplasmic expression was associated with lower relapse rates (P = 0.019). Cytoplasmic NIK expression as well as NF-κB2/ Bcl3 detection was associated with lymph node infiltration (P = 0.039 and P = 0.014, respectively). The present study confirms the deregulation of the NF-κB alternative pathway in NSCLC and also demonstrates the importance of this pathway in prognosis, recurrence and infiltration of regional lymph nodes
NF-kB2 genetic variations are significantly associated with non-small cell lung cancer risk and overall survival
During the last decade, a growing number of publications implicate NF-kB2 in NSCLC pathogenesis. Here, we investigated the clinical relevance of NF-kB2 single nucleotide polymorphisms (SNPs) rs7897947, rs11574852 and rs12769316 in NSCLC and their association with NF-kB2 protein and mRNA levels. Our data show that TT (rs7897947T >G) and AA (rs12769316G >A) genotypes were strongly associated with an increased risk for NSCLC (P = 0.019 and P = 0.003, respectively). Additionally, in multivariate analysis, TT (rs7897947T >G) homozygosity was associated with worse 2- and 3-year survival rates (P = 0.030 and P = 0.028, respectively), especially among patients with stages III/IV, who had worse 2, 3 and 5-year survival (P = 0.001, P = 0.022 and P = 0.035, respectively). In chemotherapy-treated patients, TT (rs12769316G >A) homozygosity was also associated with worse 2- and 3-year survival compared to G allele carriers (P = 0.006 and P = 0.014, respectively). Furthermore, rs12769316 was correlated with survival outcome of stage I and II patients (P = 0.031 and P = 0.006, respectively). Interestingly, amongst the patients who developed metastases, A allele carriers had better 5-year survival (P = 0.020). In addition, rs12769316 was associated with NF-kB2 protein (P = 0.001) and mRNA expression (P = 0.017) as well as with tumor maximum diameter (P = 0.025). Overall, this study suggests that rs7897947 and rs12769316 are involved in NSCLC susceptibility, in treatment response and in clinical outcome
The inhibition of aromatase alters the mechanical and rheological properties of non-small-cell lung cancer cell lines affecting cell migration
AbstractTumor invasion and metastasis are key aspects of non-small cell lung cancer (NSCLC). During migration, cells undergo mechanical alterations. The mechanical phenotype of breast cancer cells is correlated with aromatase gene expression. We have previously shown that targeting aromatase is a promising strategy for NSCLC. The aim of this study was to examine morphological and mechanical changes of NSCLC cells, upon treatment with aromatase inhibitor and correlate their ability to migrate and invade. In vitro experiments were performed using H23 and A549 NSCLC cell lines and exemestane was used for aromatase inhibition. We demonstrated that exemestane reduced H23 cell migration and invasion and caused changes in cell morphology including increased vacuolar structures and greater pleomorphism. In addition, exemestane changed the distribution of α-tubulin in H23 and A549 cells in a way that might destabilize microtubules polymerization. These effects were associated with increased cell viscosity and decreased elastic shear modulus. Although exemestane caused similar effects in A549 cells regarding viscosity and elastic shear modulus, it did not affect A549 cell migration and caused an increase in invasion. The increased invasion was in line with vimentin perinuclear localization. Our data show that the treatment of NSCLC cells with an aromatase inhibitor not only affects cell migration and invasion but also alters the mechanical properties of the cells. It suggests that the different origin of cancer cells is associated with different morphological characteristics and mechanical behavior