1,683 research outputs found
Multiple Object Tracking in Urban Traffic Scenes with a Multiclass Object Detector
Multiple object tracking (MOT) in urban traffic aims to produce the
trajectories of the different road users that move across the field of view
with different directions and speeds and that can have varying appearances and
sizes. Occlusions and interactions among the different objects are expected and
common due to the nature of urban road traffic. In this work, a tracking
framework employing classification label information from a deep learning
detection approach is used for associating the different objects, in addition
to object position and appearances. We want to investigate the performance of a
modern multiclass object detector for the MOT task in traffic scenes. Results
show that the object labels improve tracking performance, but that the output
of object detectors are not always reliable.Comment: 13th International Symposium on Visual Computing (ISVC
Magnetometry via a double-pass continuous quantum measurement of atomic spin
We argue that it is possible in principle to reduce the uncertainty of an
atomic magnetometer by double-passing a far-detuned laser field through the
atomic sample as it undergoes Larmor precession. Numerical simulations of the
quantum Fisher information suggest that, despite the lack of explicit
multi-body coupling terms in the system's magnetic Hamiltonian, the parameter
estimation uncertainty in such a physical setup scales better than the
conventional Heisenberg uncertainty limit over a specified but arbitrary range
of particle number N. Using the methods of quantum stochastic calculus and
filtering theory, we demonstrate numerically an explicit parameter estimator
(called a quantum particle filter) whose observed scaling follows that of our
calculated quantum Fisher information. Moreover, the quantum particle filter
quantitatively surpasses the uncertainty limit calculated from the quantum
Cramer-Rao inequality based on a magnetic coupling Hamiltonian with only
single-body operators. We also show that a quantum Kalman filter is
insufficient to obtain super-Heisenberg scaling, and present evidence that such
scaling necessitates going beyond the manifold of Gaussian atomic states.Comment: 17 pages, updated to match print versio
The magnetic evolution of AR 6555 which lead to two impulsive, readily compact, X-type flares
We study the evolution of the vector magnetic field and the sunspot motions observed in AR 6555 during 23-26 Mar. 1991. This region displays two locations of large magnetic shear that were also sites of flare activity. The first location produced two large (X-class) flares during the period covered by our observations. The second location had larger magnetic shear than the first, but produced only small (M- and C-class) flares during our observations. We study the evolution of the photospheric magnetic field in relation to the large flares in the first location. These flares occurred around the same included polarity, and have very similar characteristics (soft X-ray light curves, energies, etc.). However, the whole active region has changed substantially in the period between them. We found several characteristics of the region that appear related to the occurrence of these flares. (1) The flares occurred near regions of large magnetic 'shear,' but not at the locations of maximum shear or maximum field. (2) Potential field extrapolations of the observed field suggest that the topology changed, prior to the first of the two flares, in such a way that a null appeared in the coarse magnetic field. (3) This null was located close to both X-class flares, and remained in that location for a few days while the two flares were observed. (4) The flaring region has a pattern of vector field and sunspot motions in which material is 'squeezed' along the polarity inversion line. This pattern is very different from that usually associated with shearing arcades, but it is similar to that suggested previously by Fontenla and Davis. The vertical electric currents, inferred from the transverse field, are consistent with this pattern. (5) A major reconfiguration of the longitudinal field and the vertical electric currents occurred just prior to the first of the two flares. Both changes imply substantial variations of the magnetic structure of the region. On the basis of the available data we suggest that these changes made the flaring possible, and we develop a scenario that can explain the origin of the magnetic free energy that was released in these flares
The Magnetic Evolution of AR 6555 which led to Two Impulsive, Relatively Compact, X-Type Flares
We study the evolution of the vector magnetic field and the sunspot motions observed in AR 6555 during 1991 March 23-26. This region displays two locations of large magnetic shear that were also sites of flare activity. The first location produced two large (X-class) flares during the period covered by our observations. The second location had larger magnetic shear than the first but produced only small (M- and C-class) flares during our observations. We study the evolution of the photospheric magnetic field in relation to the large flares in the first location. These flares occurred around the same included polarity and have very similar characteristics (soft X-ray light curves, energies, etc,). However, the whole active region has changed substantially in the period between them. We found several characteristics of the region that appear related to the occurrence of these flares: (1) The flares occurred near regions of large magnetic 'shear' but not at the locations of maximum shear or maximum field. (2) Potential field extrapolations of the observed field suggest that the topology changed, prior to the first of the two flares, in such a way that a null appeared in the coarse magnetic field. (3) This null was located close to both X-class flares and remained in that location for a few days while the two flares were observed. (4) The flaring region has a pattern of vector field and sunspot motions in which material is 'squeezed' along the polarity inversion line. This pattern is very different from that usually associated with shearing arcades, but it is similar to that suggested previously by Fontenia and Davis. The vertical electric currents, inferred from the transverse field, are consistent with this pattern. (5) A major reconfiguration of the longitudinal field and the vertical electric currents occurred just prior to the first of the two flares. Both changes imply substantial variations of the magnetic structure of the region. On the basis of the available data we suggest that these changes made the flaring possible, and we develop a scenario that can explain the origin of the magnetic free-energy that was released in these flares
Stabilization of BEC droplet in free space by feedback control of interatomic interaction
A self-trapped Bose-Einstein condensate in three-dimensional free space is
shown to be stabilized by feedback control of the interatomic interaction
through nondestructive measurement of the condensate's peak column density. The
stability is found to be robust against poor resolution and experimental errors
in the measurement.Comment: 7 pages, 6 figure
Optimised configuration of sensors for fault tolerant control of an electro-magnetic suspension system
For any given system the number and location of sensors can affect the closed-loop performance as well as the reliability of the system. Hence, one problem in control system design is the selection of the sensors in some optimum sense that considers both the system performance and reliability. Although some methods have been proposed that deal with some of the aforementioned aspects, in this work, a design framework dealing with both control and reliability aspects is presented. The proposed framework is able to identify the best sensor set for which optimum performance is achieved even under single or multiple sensor failures with minimum sensor redundancy. The proposed systematic framework combines linear quadratic Gaussian control, fault tolerant control and multiobjective optimisation. The efficacy of the proposed framework is shown via appropriate simulations on an electro-magnetic suspension system
Computationally efficient solutions for tracking people with a mobile robot: an experimental evaluation of Bayesian filters
Modern service robots will soon become an essential part of modern society. As they have to move and act in human environments, it is essential for them to be provided with a fast and reliable tracking system that localizes people in the neighbourhood. It is therefore important to select the most appropriate filter to estimate the position of these persons.
This paper presents three efficient implementations of multisensor-human tracking based on different Bayesian estimators: Extended Kalman Filter (EKF), Unscented Kalman Filter (UKF) and Sampling Importance Resampling (SIR) particle filter. The system implemented on a mobile robot is explained, introducing the methods used to detect and estimate the position of multiple people. Then, the solutions based on the three filters are discussed in detail. Several real experiments are conducted to evaluate their performance, which is compared in terms of accuracy, robustness and execution time of the estimation. The results show that a solution based on the UKF can perform as good as particle filters and can be often a better choice when computational efficiency is a key issue
Investigation of the Role of Mitochondrial DNA in Multiple Sclerosis Susceptibility
Several lines of evidence suggest that mitochondrial genetic factors may influence susceptibility to multiple sclerosis. To explore this hypothesis further, we re-sequenced the mitochondrial genome (mtDNA) from 159 patients with multiple sclerosis and completed a haplogroup analysis including a further 835 patients and 1,506 controls. A trend towards over-representation of super-haplogroup U was the only evidence for association with mtDNA that we identified in these samples. In a parallel analysis of nuclear encoded mitochondrial genes, we also found a trend towards association with the complex I gene, NDUFS2. These results add to the evidence suggesting that variation in mtDNA and nuclear encoded mitochondrial genes may contribute to disease susceptibility in multiple sclerosis
Towards Autopoietic Computing
A key challenge in modern computing is to develop systems that address
complex, dynamic problems in a scalable and efficient way, because the
increasing complexity of software makes designing and maintaining efficient and
flexible systems increasingly difficult. Biological systems are thought to
possess robust, scalable processing paradigms that can automatically manage
complex, dynamic problem spaces, possessing several properties that may be
useful in computer systems. The biological properties of self-organisation,
self-replication, self-management, and scalability are addressed in an
interesting way by autopoiesis, a descriptive theory of the cell founded on the
concept of a system's circular organisation to define its boundary with its
environment. In this paper, therefore, we review the main concepts of
autopoiesis and then discuss how they could be related to fundamental concepts
and theories of computation. The paper is conceptual in nature and the emphasis
is on the review of other people's work in this area as part of a longer-term
strategy to develop a formal theory of autopoietic computing.Comment: 10 Pages, 3 figure
Moment inversion problem for piecewise D-finite functions
We consider the problem of exact reconstruction of univariate functions with
jump discontinuities at unknown positions from their moments. These functions
are assumed to satisfy an a priori unknown linear homogeneous differential
equation with polynomial coefficients on each continuity interval. Therefore,
they may be specified by a finite amount of information. This reconstruction
problem has practical importance in Signal Processing and other applications.
It is somewhat of a ``folklore'' that the sequence of the moments of such
``piecewise D-finite''functions satisfies a linear recurrence relation of
bounded order and degree. We derive this recurrence relation explicitly. It
turns out that the coefficients of the differential operator which annihilates
every piece of the function, as well as the locations of the discontinuities,
appear in this recurrence in a precisely controlled manner. This leads to the
formulation of a generic algorithm for reconstructing a piecewise D-finite
function from its moments. We investigate the conditions for solvability of the
resulting linear systems in the general case, as well as analyze a few
particular examples. We provide results of numerical simulations for several
types of signals, which test the sensitivity of the proposed algorithm to
noise
- …