3 research outputs found

    Long-term survival of olfactory sensory neurons after target depletion.

    Get PDF
    Life-long addition and elimination of neurons within the adult olfactory epithelium and olfactory bulb allows for adaptive structural responses to sensory experience, learning, and recovery after injury. The interdependence of the two structures is highlighted by the shortened life span of sensory neurons deprived of bulb contact, and has prompted the hypothesis that trophic cues from the bulb contribute to their survival. The specific identity and source of these signals remain unknown. To investigate the potential role of target neurons in this support, we employed a neurotoxic lesion to selectively remove them while preserving the remaining nerve projection pathway, and examined the dynamics of sensory neuron proliferation and survival. Pulse-labeling of progenitors with bromodeoxyuridine showed that, as with surgical bulb removal, increased apoptosis in the epithelium triggered accelerated production of new neurons after chemical depletion of target cells. Rather than undergoing premature death, a large subpopulation of these neurons survived long term. The combination of increased proliferation and extended survival resulted in essentially normal numbers of new sensory neurons surviving for as long as 5 weeks, with an accompanying restoration of olfactory marker protein expression. Changes in neurotrophic factor expression levels as measured by quantitative polymerase chain reaction (Q-PCR), and in bulb cell populations, including the addition of new neurons generated in the subventricular zone, were observed in the injured bulb. These data indicate that olfactory sensory neurons can adapt to reductions in their normal target field by obtaining sufficient support from remaining or alternative cell sources to survive and maintain their projections

    Identification of Target Cells for the Genomic Effects of Estrogens in Bone

    No full text
    Estrogen has bone protective effects, but the exact mechanism behind these effects remains unclear. The aim of the present study was to identify the primary target cells in bone for the classical genomic effects of estrogens in vivo. For this purpose we have used reporter mice with a luciferase gene under the control of three estrogen-responsive elements (EREs), enabling detection of in vivo activation of gene transcription. Three-month-old ovariectomized mice were treated with a single dose (50microg/kg) 17beta-estradiol (E2). Luciferase activity was analysed in several tissues and in different bone marrow-derived lymphocyte enriched/depleted preparations using MacsMouse CD19 (for B lymphocytes) or CD90 (for T lymphocytes) MicroBeads. Histological characterization of cells with high luciferase content was performed using immunohistochemistry. Both cortical bone and bone marrow displayed a rapid (within 1h) and pronounced E2-induced increase in luciferase activity. The luciferase activity in total bone marrow and in bone marrow depleted of lymphocytes was increased 6-8 times more than in either B lymphocyte and T lymphocyte enriched cell fractions 4h after the E2-injection, demonstrating that mature lymphocytes are not major direct targets for the genomic effect of estrogens in bone. Immunohistochemistry identified clear luciferase staining in hypertrophic growth plate chondrocytes, megakaryocytes, osteoblasts and lining cells, while no staining was seen in proliferative chondrocyte. Although most of the osteocytes did not display any detectable luciferase staining, a subpopulation of osteocytes both in cortical and trabecular bone stained positive for luciferase. In conclusion, hypertrophic growth plate chondrocytes, megakaryocytes, osteoblasts, lining cells and a subpopulation of osteocytes were identified to respond to estrogen via the classical ERE-mediated genomic pathway in bone. Furthermore, our findings indicate that possible direct estrogenic effects on the majority of osteocytes, not staining positive for luciferase, on proliferative chondrocytes and on mature lymphocytes are mediated by non-ERE actions
    corecore