650 research outputs found

    Resummation of Threshold, Low- and High-Energy Expansions for Heavy-Quark Correlators

    Full text link
    With the help of the Mellin-Barnes transform, we show how to simultaneously resum the expansion of a heavy-quark correlator around q^2=0 (low-energy), q^2= 4 m^2 (threshold, where m is the quark mass) and q^2=-\infty (high-energy) in a systematic way. We exemplify the method for the perturbative vector correlator at O(alpha_s^2) and O(alpha_s^3). We show that the coefficients, Omega(n), of the Taylor expansion of the vacuum polarization function in terms of the conformal variable \omega admit, for large n, an expansion in powers of 1/n (up to logarithms of n) that we can calculate exactly. This large-n expansion has a sign-alternating component given by the logarithms of the OPE, and a fixed-sign component given by the logarithms of the threshold expansion in the external momentum q^2.Comment: 27 pages, 8 figures. We fix typos in Eqs. (18), (27), (55) and (56). Results unchange

    Frobenius Splittings

    Full text link
    We give a gentle introduction to Frobenius splittings. Then we recall a few results that have been obtained with the method.Comment: 21 pages, typos correcte

    Cohomology for Frobenius kernels of SL2SL_2

    Full text link
    Let (SL2)r(SL_2)_r be the rr-th Frobenius kernels of the group scheme SL2SL_2 defined over an algebraically field of characteristic p>2p>2. In this paper we give for r≥1r\ge 1 a complete description of the cohomology groups for (SL2)r(SL_2)_r. We also prove that the reduced cohomology ring \opH^\bullet((SL_2)_r,k)_{\red} is Cohen-Macaulay. Geometrically, we show for each r≥1r\ge 1 that the maximal ideal spectrum of the cohomology ring for (SL2)r(SL_2)_r is homeomorphic to the fiber product G\times_B\fraku^r. Finally, we adapt our calculations to obtain analogous results for the cohomology of higher Frobenius-Luzstig kernels of quantized enveloping algebras of type SL2SL_2.Comment: published version; a section for the case p=2 is adde

    The large N limit of M2-branes on Lens spaces

    Full text link
    We study the matrix model for N M2-branes wrapping a Lens space L(p,1) = S^3/Z_p. This arises from localization of the partition function of the ABJM theory, and has some novel features compared with the case of a three-sphere, including a sum over flat connections and a potential that depends non-trivially on p. We study the matrix model both numerically and analytically in the large N limit, finding that a certain family of p flat connections give an equal dominant contribution. At large N we find the same eigenvalue distribution for all p, and show that the free energy is simply 1/p times the free energy on a three-sphere, in agreement with gravity dual expectations.Comment: 28 pages, 4 figure

    Steinberg modules and Donkin pairs

    Full text link
    We prove that in positive characteristic a module with good filtration for a group of type E6 restricts to a module with good filtration for a subgroup of type F4. (Recall that a filtration of a module for a semisimple algebraic group is called good if its layers are dual Weyl modules.) Our result confirms a conjecture of Brundan for one more case. The method relies on the canonical Frobenius splittings of Mathieu. Next we settle the remaining cases, in characteristic not 2, with a computer-aided variation on the old method of Donkin.Comment: 16 pages; proof of Brundan's conjecture adde

    Estimating Affective Taste Experience Using Combined Implicit Behavioral and Neurophysiological Measures

    Get PDF
    We trained a model to distinguish an extreme high arousal, unpleasant drink from regular drinks based on a range of implicit behavioral and physiological responses to naturalistic tasting. The trained model predicted arousal ratings of regular drinks, highlighting the possibility to estimate affective experience without having to rely on subjective ratings.</p

    Gravitational mechanisms to self-tune the cosmological constant: obstructions and ways forward

    Get PDF
    Gravitational models of self-tuning are those in which vacuum energy has no observable effect on spacetime curvature, even though it is a priori unsuppressed below the cut-off. We complement Weinberg's no go theorem by studying field theoretic completions of self-adjustment allowing for broken translations as well as other generalisations, and identify new obstructions. Our analysis uses a very general Källén-Lehmann spectral representation of the exchange amplitude for conserved sources of energy-momentum and exploits unitarity and Lorentz invariance to show that a transition from self-tuning of long wavelength sources to near General Relativity on shorter scales is generically not possible. We search for novel ways around our obstructions and highlight two interesting possibilities. The first is an example of a unitary field configuration on anti-de Sitter space with the desired transition from self-tuning to GR. A second example is motivated by vacuumenergy sequestering

    Orientifolds and the Refined Topological String

    Full text link
    We study refined topological string theory in the presence of orientifolds by counting second-quantized BPS states in M-theory. This leads us to propose a new integrality condition for both refined and unrefined topological strings when orientifolds are present. We define the SO(2N) refined Chern-Simons theory which computes refined open string amplitudes for branes wrapping Seifert three-manifolds. We use the SO(2N) refined Chern-Simons theory to compute new invariants of torus knots that generalize the Kauffman polynomials. At large N, the SO(2N) refined Chern-Simons theory on the three-sphere is dual to refined topological strings on an orientifold of the resolved conifold, generalizing the Gopakumar-Sinha-Vafa duality. Finally, we use the (2,0) theory to define and solve refined Chern-Simons theory for all ADE gauge groups

    5-dim Superconformal Index with Enhanced En Global Symmetry

    Full text link
    The five-dimensional N=1\mathcal{N}=1 supersymmetric gauge theory with Sp(N) gauge group and SO(2N_f) flavor symmetry describes the physics on N D4-branes with NfN_f D8-branes on top of a single O8 orientifold plane in Type I' theory. This theory is known to be superconformal at the strong coupling limit with the enhanced global symmetry ENf+1E_{N_f+1} for Nf≤7N_f\le 7. In this work we calculate the superconformal index on S1×S4S^1\times S^4 for the Sp(1) gauge theory by the localization method and confirm such enhancement of the global symmetry at the superconformal limit for Nf≤5N_f\le 5 to a few leading orders in the chemical potential. Both perturbative and (anti)instanton contributions are present in this calculation. For Nf=6,7N_f=6,7 cases some issues related the pole structure of the instanton calculation could not be resolved and here we could provide only some suggestive answer for the leading contributions to the index. For the Sp(N) case, similar issues related to the pole structure appear.Comment: 70 pages, references added, published versio
    • …
    corecore