29 research outputs found

    Valley Coherent Hot Carriers and Thermal Relaxation in Monolayer Transition Metal Dichalcogenides

    Full text link
    We show room temperature valley coherence with in MoS2, MoSe2, WS2 and WSe2 monolayers using linear polarization resolved hot photoluminescence (PL), at energies close to the excitation - demonstrating preservation of valley coherence before sufficient scattering events. The features of the co-polarized hot luminescence allow us to extract the lower bound of the binding energy of the A exciton in monolayer MoS2 as 0.42 (+/- 0.02) eV. The broadening of the PL peak is found to be dominated by Boltzmann-type hot luminescence tail, and using the slope of the exponential decay, the carrier temperature is extracted in-situ at different stages of energy relaxation. The temperature of the emitted optical phonons during the relaxation process are probed by exploiting the corresponding broadening of the Raman peaks due to temperature induced anharmonic effects. The findings provide a physical picture of photo-generation of valley coherent hot carriers, and their subsequent energy relaxation path ways

    Direct observation of giant binding energy modulation of exciton complexes in monolayer MoSe2_2

    Full text link
    Screening due to surrounding dielectric medium reshapes the electron-hole interaction potential and plays a pivotal role in deciding the binding energies of strongly bound exciton complexes in quantum confined monolayers of transition metal dichalcogenides (TMDs). However, owing to strong quasi-particle bandgap renormalization in such systems, a direct quantification of estimated shifts in binding energy in different dielectric media remains elusive using optical studies. In this work, by changing the dielectric environment, we show a conspicuous photoluminescence (PL) peak shift at low temperature for higher energy excitons (2s, 3s, 4s, 5s) in monolayer MoSe2_2, while the 1s exciton peak position remains unaltered - a direct evidence of varying compensation between screening induced exciton binding energy modulation and quasi-particle bandgap renormalization. The estimated modulation of binding energy for the 1s exciton is found to be 58.6% (70.5% for 2s, 78.9% for 3s, 85% for 4s) by coating an Al2_2O3_3 layer on top, while the corresponding reduction in quasi-particle bandgap is estimated to be 248 meV. Such a direct evidence of large tunability of the binding energy of exciton complexes as well as the bandgap in monolayer TMDs holds promise of novel device applications.Comment: 19 pages including supplemental informatio

    Asymmetrically Encapsulated vertical ITO/MoS2/Cu2O photodetector with ultra-high sensitivity

    Full text link
    Strong light absorption, coupled with moderate carrier transport properties, makes two-dimensional (2-D) layered transition metal dichalcogenide (TMD) semiconductors promising candidates for low intensity photodetection applications. However, the performance of these devices is severely bottlenecked by slow response with persistent photocurrent due to long lived charge trapping, and nonreliable characteristics due to undesirable ambience and substrate effects. Here we demonstrate ultra-high specific detectivity (D*) of 3.2x10^14 Jones and responsivity (R) of 5.77x10^4 AW-1 at an optical power density (P_op) of 0.26 Wm-2 and external bias (V_ext) of -0.5 V in an indium tin oxide (ITO)/MoS2/copper oxide (Cu2O)/Au vertical multi-heterojunction photodetector exhibiting small carrier transit time. The active MoS2 layer being encapsulated by carrier collection layers allows us to achieve negligible trap assisted persistent photocurrent and repeatable characteristics over large number of cycles. We also achieved a large D*>10^14 Jones at zero external bias due to the built-in field of the asymmetric photodetector. Benchmarking the performance against existing reports in literature shows a pathway for achieving reliable and highly sensitive photodetectors for ultra-low intensity photodetection applications.Comment: Accepted in Small, Wile

    Substrate effects in high gain, low operating voltage SnSe2 photoconductor

    Full text link
    High gain photoconductive devices find wide spread applications in low intensity light detection. Ultra-thin layered materials have recently attracted a lot of attention from researchers in this regard. However, in general, a large operating voltage is required to obtain large responsivity in these devices. In addition, the characteristics are often confounded by substrate induced trap effects. Here we report multi-layer SnSe2 based photoconductive devices using two different structures: (1) SiO2 substrate supported interdigitated electrode (IDE), and (2) suspended channel. The IDE device exhibits a responsivity of ~ 10^3 A/W and 8.66x10^4 A/W at operating voltages of 1 mV and 100 mV, respectively - a superior low voltage performance over existing literature on planar 2D structures. However, the responsivity reduces by more than two orders of magnitude, while the transient response improves for the suspended device - providing insights into the critical role played by the channel-substrate interface in the gain mechanism. The results, on one hand, are promising for highly sensitive photoconductive applications consuming ultra-low power, and on the other hand, show a generic methodology that could be applied to other layered material based photoconductive devices as well for extracting the intrinsic behavior.Comment: 16 pages, 6 figures, Accepted in Nanotechnology (IOP

    Photoresponse of atomically thin MoS2 layers and their planar heterojunctions

    Full text link
    MoS2 monolayers exhibit excellent light absorption and large thermoelectric power, which are, however, accompanied with very strong exciton binding energy - resulting in complex photoresponse characteristics. We study the electrical response to scanning photo-excitation on MoS2 monolayer (1L) and bilayer (2L) devices, and also on monolayer/bilayer (1L/2L) planar heterojunction and monolayer/few-layer/multi-layer (1L/FL/ML) planar double heterojunction devices to unveil the intrinsic mechanisms responsible for photocurrent generation in these materials and junctions. Strong photoresponse modulation is obtained by scanning the position of the laser spot, as a consequence of controlling the relative dominance of a number of layer dependent properties, including (i) photoelectric effect (PE), (ii) photothermoelectric effect (PTE), (iii) excitonic effect, (iv) hot photo-electron injection from metal, and (v) carrier recombination. The monolayer and bilayer devices show peak photoresponse when the laser is focused at the source junction, while the peak position shifts to the monolayer/multi-layer junction in the heterostructure devices. The photoresponse is found to be dependent on the incoming light polarization when the source junction is illuminated, although the polarization sensitivity drastically reduces at the monolayer/multi-layer heterojunction. Finally, we investigate laser position dependent transient response of photocurrent to reveal trapping of carriers in SiO2 at the source junction is the critical factor to determine the transient response in 2D photodetectors, and also show that, by systematic device design, such trapping can be avoided in the heterojunction devices, resulting in fast transient response. The insights obtained will play an important role in designing fast 2D TMDs based photodetector and related optoelectronic and thermoelectric devices.Comment: Nanoscale, 201

    Strong Single- and Two-Photon Luminescence Enhancement by Nonradiative Energy Transfer across Layered Heterostructure

    Full text link
    The strong light-matter interaction in monolayer transition metal dichalcogenides (TMDs) is promising for nanoscale optoelectronics with their direct band gap nature and the ultra-fast radiative decay of the strongly bound excitons these materials host. However, the impeded amount of light absorption imposed by the ultra-thin nature of the monolayers impairs their viability in photonic applications. Using a layered heterostructure of a monolayer TMD stacked on top of strongly absorbing, non-luminescent, multi-layer SnSe2, we show that both single-photon and two-photon luminescence from the TMD monolayer can be enhanced by a factor of 14 and 7.5, respectively. This is enabled through inter-layer dipole-dipole coupling induced non-radiative Forster resonance energy transfer (FRET) from SnSe2 underneath which acts as a scavenger of the light unabsorbed by the monolayer TMD. The design strategy exploits the near-resonance between the direct energy gap of SnSe2 and the excitonic gap of monolayer TMD, the smallest possible separation between donor and acceptor facilitated by van der Waals heterojunction, and the in-plane orientation of dipoles in these layered materials. The FRET driven uniform single- and twophoton luminescence enhancement over the entire junction area is advantageous over the local enhancement in quantum dot or plasmonic structure integrated 2D layers, and is promising for improving quantum efficiency in imaging, optoelectronic, and photonic applications

    Nature of carrier injection in metal/2D semiconductor interface and its implications to the limits of contact resistance

    Full text link
    Monolayers of transition metal dichalcogenides (TMDCs) exhibit excellent electronic and optical properties. However, the performance of these two-dimensional (2D) devices are often limited by the large resistance offered by the metal contact interface. Till date, the carrier injection mechanism from metal to 2D TMDC layers remains unclear, with widely varying reports of Schottky barrier height (SBH) and contact resistance (Rc), particularly in the monolayer limit. In this work, we use a combination of theory and experiments in Au and Ni contacted monolayer MoS2 device to conclude the following points: (i) the carriers are injected at the source contact through a cascade of two potential barriers - the barrier heights being determined by the degree of interaction between the metal and the TMDC layer; (ii) the conventional Richardson equation becomes invalid due to the multi-dimensional nature of the injection barriers, and using Bardeen-Tersoff theory, we derive the appropriate form of the Richardson equation that describes such composite barrier; (iii) we propose a novel transfer length method (TLM) based SBH extraction methodology, to reliably extract SBH by eliminating any confounding effect of temperature dependent channel resistance variation; (iv) we derive the Landauer limit of the contact resistance achievable in such devices. A comparison of the limits with the experimentally achieved contact resistance reveals plenty of room for technological improvements.Comment: Accepted in Physical Review

    Gate-Tunable Transmon Using Selective-Area-Grown Superconductor-Semiconductor Hybrid Structures on Silicon

    Full text link
    We present a gate-voltage tunable transmon qubit (gatemon) based on planar InAs nanowires that are selectively grown on a high resistivity silicon substrate using III-V buffer layers. We show that low loss superconducting resonators with an internal quality of 2×1052\times 10^5 can readily be realized using these substrates after the removal of buffer layers. We demonstrate coherent control and readout of a gatemon device with a relaxation time, T1700nsT_{1}\approx 700\,\mathrm{ns}, and dephasing times, T220nsT_2^{\ast}\approx 20\,\mathrm{ns} and T2,echo1.3μsT_{\mathrm{2,echo}} \approx 1.3\,\mathrm{\mu s}. Further, we infer a high junction transparency of 0.40.90.4 - 0.9 from an analysis of the qubit anharmonicity
    corecore