11 research outputs found

    Peroxide impact on the fate of veterinary drugs in fertilizers

    Get PDF
    The presence of veterinary medicines in organic manure causes soil contamination which contributes to increasing resistance of indigenous microflora to drugs and results in greater susceptibility of people to allergies. The main aim of the study was to assess the efficiency of inorganic peroxide mixtures (PM) with calcium peroxide content (CaO2) in the stabilization process of manure contaminated with antiparasitic agents: albendazole (ALB) and levamisole (LEV). As a solid, CaO2 is relatively stable against decomposition. In contact with water, however, it hydrolyzes with release of oxygen. The hydrolyzation of CaO2 proceeds very slowly in soil, which guarantees the constant release of hydrogen peroxide that subsequently becomes the source of free radicals (chemical oxidation) and oxygen (aerobic conditions for the microbes). It may contribute to continuous elimination of drugs from manure. The study has demonstrated that there were significant differences in ALB and LEV conversion stimulated by the PM addition. PM supplementation increased the drug availability (on average 15% and 25% increase in the initial concentration for ALB and for LEV, respectively), thereby increasing the initial rate of reaction. Elimination of ALB and LEV from the manure sorption complex is followed by Ca2+ saturation. The initial degradation rate was affected by PM for both drugs, but the mechanisms of decomposition have been modified only for ALB. The loss of ALB in the peroxide supplemented samples was 92%, and in the samples, without the PM, it did not exceed 61%. Loss of LEV was over 90% irrespective of PM supplementation.Web of Science74132231

    A pretreatment method for analysing albendazole by HPLC in plant material

    Get PDF
    Albendazole (ALB) belongs to a group of benzimidazoles—classified as antiparasitic pharmaceuticals. Its widespread application results in the presence of this pharmaceutical in natural environment (water and soil). In this paper a suitable pretreatment method was established including sampling, freezedrying and extraction. Vicia faba was used as model organism. ALB accumulation by plant tissues was observed in hydroponic culture as well as in soil. The range of pharmaceutical concentrations was 1.7×10−5 mol/L (in hydroponic culture) and 1.7×10−5 to 1.7×10−4 mol/kg air dry soil (in soil). Observations were conducted for 14 days. After this time biological material was freezedried and after homogenization, dimethyl sulfoxide (DMSO) extraction was performed. The recovery of ALB for the roots was 93 % while for the shoots 86 %. After cleaning, the samples were subjected to further analysis by HPLC system. Phosphate buffer and acetonitrile (50:50) were used as a mobile phase. Drug retention time was 6.3 min. Results obtained in this experiment indicate higher drug accumulation in roots rather than in the hypocotyl part of the plant, cultivated both in soil and in hydroponic culture.Web of Science2248art. no. 164

    The Comet Assay for the Evaluation of Genotoxic Potential of Landfill Leachate

    Get PDF
    Genotoxic assessment of landfill leachate before and after biological treatment was conducted with two human cell lines (Me45 and NHDF) and Daphnia magna somatic cells. The alkali version of comet assay was used to examine genotoxicity of leachate by DNA strand breaks analysis and its repair dynamics. The leachate samples were collected from Zabrze landfill, situated in the Upper Silesian Industrial District, Poland. Statistically significant differences (Kruskal-Wallice ANOVA rank model) were observed between DNA strand breaks in cells incubated with leachate before and after treatment (P < 0.001). Nonparametric Friedman ANOVA confirmed time-reliable and concentration-reliable cells response to leachate concentration. Examinations of chemical properties showed a marked decrease in leachate parameters after treatment which correlate to reduced genotoxicity towards tested cells. Obtained results demonstrate that biological cotreatment of leachate together with municipal wastewater is an efficient method for its genotoxic potential reduction; however, treated leachate still possessed genotoxic character

    Towards Sustainable Wastewater Treatment: Bioindication as a Technique for Supporting Treatment Efficiency Assessment

    No full text
    Constructed wetlands (CWs) are a promising alternative for conventional methods of wastewater treatment. However, the biggest challenge in wastewater treatment is the improvement of the technology used so that it is possible to remove micropollutants without additional costs. The impact of wastewater treatment in CWs on toxicity towards Aliivibrio fischeri, Daphnia magna and Lemna minor was investigated. The effects of feeding regime (wastewater fed in five batches per week at a batch volume of 1 L, or twice per week at a batch volume of 2.5 L) and the presence of pharmaceuticals (diclofenac and sulfamethoxazole), as well as the presence of Miscantus giganteus plants in CW columns (twelve of the 24 columns that were planted) were analyzed. A reduction in toxicity was observed in all experimental setups. The effluents from constructed wetlands were classified as moderately toxic (average TU for A. fischeri, D. magna and L. minor was 0.9, 2.5 and 5.5, respectively). The feeding regime of 5 days of feeding/2 days of resting resulted in a positive impact on the ecotoxicological and chemical parameters of wastewater (removal of TOC, N-NH4 and pharmaceuticals). Extended exposure of Miscantus giganteus to the wastewater containing pharmaceuticals resulted in elevated activity of antioxidant enzymes (catalase and superoxide dismutase) in leaf material

    Alternative Methods for Skin-Sensitization Assessment

    No full text
    Skin sensitization is a term used to refer to the regulatory hazard known as allergic contact dermatitis (ACD) in humans or contact hypersensitivity in rodents, an important health endpoint considered in chemical hazard and risk assessments. Information on skin sensitization potential is required in various regulatory frameworks, such as the Directive of the European Parliament and the Council on Registration, Evaluation and Authorization of Chemicals (REACH). The identification of skin-sensitizing chemicals previously required the use of animal testing, which is now being replaced by alternative methods. Alternative methods in the field of skin sensitization are based on the measurement or prediction of key events (KE), i.e., (i) the molecular triggering event, i.e., the covalent binding of electrophilic substances to nucleophilic centers in skin proteins; (ii) the activation of keratinocytes; (iii) the activation of dendritic cells; (iv) the proliferation of T cells. This review article focuses on the current state of knowledge regarding the methods corresponding to each of the key events in skin sensitization and considers the latest trends in the development and modification of these methods

    The cientificWorldJOURNAL The Comet Assay for the Evaluation of Genotoxic Potential of Landfill Leachate

    No full text
    Genotoxic assessment of landfill leachate before and after biological treatment was conducted with two human cell lines (Me45 and NHDF) and Daphnia magna somatic cells. The alkali version of comet assay was used to examine genotoxicity of leachate by DNA strand breaks analysis and its repair dynamics. The leachate samples were collected from Zabrze landfill, situated in the Upper Silesian Industrial District, Poland. Statistically significant differences (Kruskal-Wallice ANOVA rank model) were observed between DNA strand breaks in cells incubated with leachate before and after treatment (P &lt; 0.001). Nonparametric Friedman ANOVA confirmed time-reliable and concentration-reliable cells response to leachate concentration. Examinations of chemical properties showed a marked decrease in leachate parameters after treatment which correlate to reduced genotoxicity towards tested cells. Obtained results demonstrate that biological cotreatment of leachate together with municipal wastewater is an efficient method for its genotoxic potential reduction; however, treated leachate still possessed genotoxic character

    Is Biochar from the Torrefaction of Sewage Sludge Hazardous Waste?

    No full text
    Improved technologies are needed for sustainable management of sewage sludge (SS). The torrefaction (also known as biomass &ldquo;roasting&rdquo;) is considered a pretreatment of SS before use in agriculture. However, it is not known whether the torrefaction has the potential to decrease heavy metals&rsquo; (HMs) leachability and the SS toxicity. Thus, the aim of the study was to evaluate the influences of the SS torrefaction parameters (temperature and process time) on HM contents in biochar, HM leachability, and biochar toxicity, and compare them with raw SS. The experiments were designed in 18 combinations (six temperatures, 200, 220, 240, 260, 280, and 300 &deg;C; and three process times&mdash;20, 40, 60 min). Standard tests were used to determine HMs content, leachability, and toxicity. Results indicated that the torrefaction did not increase (p &lt; 0.05) the HM content in comparison to the raw SS. The leachability of Zn, Ni, Cu, Cr, and Mn from SS biochars was similar to raw SS. However, the degree of leachability varied significantly (p &lt; 0.05) from as low as 0.1% for Cu to high as 16.7% for Cd. The leachability of Cd (&lt;16.7%) and Pb (&lt;11.9%) from biochars was higher than from raw SS (&lt;6.1% and &lt;2.4%, respectively). The leachability of Cd from SS biochar, in five torrefaction combinations, was higher than the threshold value for hazardous waste. It is recommended that site-specific decisions are made for torrefaction of SS with respect to its HM content, as the resulting biochar could be considered as hazardous waste, depending on the feedstock. Moreover, the biochar produced under the whole range of temperatures during 20 min retention time significantly (p &lt; 0.05) increased the Daphnia magna Straus mobility inhibition by up to 100% in comparison to the biochar obtained during 40 and 60 min torrefaction. Taking into account the increased leachability of specific HMs and D. magna Straus mobility inhibition, biochar should be considered a potentially hazardous material. Future research should focus on biochar dosage as a fertilizer in relation to its toxicity. Additional research is warranted to focus on the optimization of SS torrefaction process parameters affecting the toxicity

    Is Biochar from the Torrefaction of Sewage Sludge Hazardous Waste?

    Get PDF
    Improved technologies are needed for sustainable management of sewage sludge (SS). The torrefaction (also known as biomass “roasting”) is considered a pretreatment of SS before use in agriculture. However, it is not known whether the torrefaction has the potential to decrease heavy metals’ (HMs) leachability and the SS toxicity. Thus, the aim of the study was to evaluate the influences of the SS torrefaction parameters (temperature and process time) on HM contents in biochar, HM leachability, and biochar toxicity, and compare them with raw SS. The experiments were designed in 18 combinations (six temperatures, 200, 220, 240, 260, 280, and 300 °C; and three process times—20, 40, 60 min). Standard tests were used to determine HMs content, leachability, and toxicity. Results indicated that the torrefaction did not increase (p This article is published as Białowiec, Andrzej; Pulka, Jakub; Styczyńska, Marzena; Koziel, Jacek A.; Kalka, Joanna; Jureczko, Marcelina; Felis, Ewa; Manczarski, Piotr. "Is Biochar from the Torrefaction of Sewage Sludge Hazardous Waste?" Materials 13, no. 16 (2020): 3544. DOI: 10.3390/ma13163544. Posted with permission.</p
    corecore