398 research outputs found

    Rashba plasmon polaritons in semiconductor heterostructures

    Full text link
    We propose a concept of surface plasmon-polariton amplification in the structure comprising interface between dielectric, metal and asymmetric quantum well. Due to the Rashba spin-orbit interaction, mimina of dispersion relation for electrons in conduction band are shifted with respect to the maximum of dispersion dependence for holes in Γ\Gamma-point. When energy and momentum intervals between extrema in dispersion relations of electrons and holes match dispersion relation of plasmons, indirect radiative transition can amplify the plasmons; excitation of leaky modes is forbidden due to the selection rules. Efficiency of the indirect radiative transition is calculated and design of the structure is analysed.Comment: Published (4 pages + 3 figures), 2nd proof versio

    Different regimes of Purcell Effect in Disordered Photonic Crystals

    Full text link
    We demonstrate that disorder in photonic crystals could lead to pronounced modification of spontaneous emission rate in the frequency region corresponding to the photonic band gap (PBG). Depending on the amount of disorder, two different regimes of the Purcell effect occurs. For the moderate disorder, an enhancement of spontaneous emission occurs at the edge of PBG due to modification of the properties of the edge state. This effect is responsible for recently observed mirrorless lasing in photonic crystals at the edge of PBG. When the level of disorder increases, the spontaneous emission rate enhances within the PBG due to the appearance of the high quality factor states. This effect is likely responsible for a superlinear dependence of emissions on the pumping observed in synthetic opals.Comment: 15 pages, 6 figures, appendi

    Nonlinear Terahertz Emission in Semiconductor Microcavities

    Get PDF
    We consider the nonlinear terahertz emission by the system of cavity polaritons in the regime of polariton lasing. To account for the quantum nature of terahertz-polariton coupling we use the Lindblad master equation approach and demonstrate that quantum microcavities reveal rich variety of the nonlinear phenomena in terahertz range, including bistability, short THz pulse generation and THz switching.Comment: 4 pages + 5 figures + Supplementary Material. (Final version containing the derivation of the kinetic equations.

    Gap solitons in quasiperiodic optical lattices

    Full text link
    Families of solitons in one- and two-dimensional (1D and 2D) Gross-Pitaevskii equations with the repulsive nonlinearity and a potential of the quasicrystallic type are constructed (in the 2D case, the potential corresponds to a five-fold optical lattice). Stable 1D solitons in the weak potential are explicitly found in three bandgaps. These solitons are mobile, and they collide elastically. Many species of tightly bound 1D solitons are found in the strong potential, both stable and unstable (unstable ones transform themselves into asymmetric breathers). In the 2D model, families of both fundamental and vortical solitons are found and are shown to be stable.Comment: 8 pages, 11 figure

    Electric generation of vortices in an exciton-polariton superfluid

    Full text link
    We have theoretically demonstrated the on demand electric generation of vortices in an exciton-polariton superfluid. Electric pulses applied to a horseshoe-shaped metallic mesa, deposited on top of the microcavity, generate a non-cylindrically symmetric solitonic wave in the system. Breakdown of its wavefront at focal points leads to the formation of vortex-antivortex pairs which subsequently propagate in the superfluid. The trajectory of these vortex dipoles can be controlled by applying a voltage to additional electrodes. They can be confined within channels formed by metallic stripes and unbound by a wedged mesa giving birth to grey solitons. Finally single static vortices can be generated using a single metallic plate configuration.Comment: 7 pages and 7 figure

    Bragg Polaritons: Strong Coupling and Amplification in an Unfolded Microcavity

    Full text link
    Periodic incorporation of quantum wells inside a one--dimensional Bragg structure is shown to enhance coherent coupling of excitons to the electromagnetic Bloch waves. We demonstrate strong coupling of quantum well excitons to photonic crystal Bragg modes at the edge of the photonic bandgap, which gives rise to mixed Bragg polariton eigenstates. The resulting Bragg polariton branches are in good agreement with the theory and allow demonstration of Bragg polariton parametric amplification.Comment: 4 pages, 4 figure

    Computation and visualization of photonic quasicrystal spectra via Blochs theorem

    Full text link
    Previous methods for determining photonic quasicrystal (PQC) spectra have relied on the use of large supercells to compute the eigenfrequencies and/or local density of states (LDOS). In this manuscript, we present a method by which the energy spectrum and the eigenstates of a PQC can be obtained by solving Maxwells equations in higher dimensions for any PQC defined by the standard cut-and-project construction, to which a generalization of Blochs theorem applies. In addition, we demonstrate how one can compute band structures with defect states in the higher-dimensional superspace with no additional computational cost. As a proof of concept, these general ideas are demonstrated for the simple case of one-dimensional quasicrystals, which can also be solved by simple transfer-matrix techniques.Comment: Published in Physical Review B, 77 104201, 200

    Resonant Photonic Quasicrystalline and Aperiodic Structures

    Full text link
    We have theoretically studied propagation of exciton-polaritons in deterministic aperiodic multiple-quantum-well structures, particularly, in the Fibonacci and Thue-Morse chains. The attention is concentrated on the structures tuned to the resonant Bragg condition with two-dimensional quantum-well exciton. The superradiant or photonic-quasicrystal regimes are realized in these structures depending on the number of the wells. The developed theory based on the two-wave approximation allows one to describe analytically the exact transfer-matrix computations for transmittance and reflectance spectra in the whole frequency range except for a narrow region near the exciton resonance. In this region the optical spectra and the exciton-polariton dispersion demonstrate scaling invariance and self-similarity which can be interpreted in terms of the ``band-edge'' cycle of the trace map, in the case of Fibonacci structures, and in terms of zero reflection frequencies, in the case of Thue-Morse structures.Comment: 13 pages, 9 figures, submitted to Phys. Rev.
    corecore