38 research outputs found

    Phase space reduction of the one-dimensional Fokker-Planck (Kramers) equation

    Full text link
    A pointlike particle of finite mass m, moving in a one-dimensional viscous environment and biased by a spatially dependent force, is considered. We present a rigorous mapping of the Fokker-Planck equation, which determines evolution of the particle density in phase space, onto the spatial coordinate x. The result is the Smoluchowski equation, valid in the overdamped limit, m->0, with a series of corrections expanded in powers of m. They are determined unambiguously within the recurrence mapping procedure. The method and the results are interpreted on the simplest model with no field and on the damped harmonic oscillator.Comment: 13 pages, 1 figur

    Another Derivation of a Sum Rule for the Two-Dimensional Two-Component Plasma

    Full text link
    In a two-dimensional two-component plasma, the second moment of the number density correlation function has the simple value {12π[1−(Γ/4)]2}−1\{12 \pi [1-(\Gamma/4)]^2\}^{-1}, where Γ\Gamma is the dimensionless coupling constant. This result is derived directly by using diagrammatic methods.Comment: 10 pages, uses axodraw.sty, elsart.sty, elsart12.sty, subeq.sty; accepted for publication in Physica A, May 200

    Driven diffusion in a periodically compartmentalized tube: homogeneity versus intermittency of particle motion

    Get PDF
    We study the effect of a driving force F on drift and diffusion of a point Brownian particle in a tube formed by identical ylindrical compartments, which create periodic entropy barriers for the particle motion along the tube axis. The particle transport exhibits striking features: the effective mobility monotonically decreases with increasing F, and the effective diffusivity diverges as F → ∞, which indicates that the entropic effects in diffusive transport are enhanced by the driving force. Our consideration is based on two different scenarios of the particle motion at small and large F, homogeneous and intermittent, respectively. The scenarios are deduced from the careful analysis of statistics of the particle transition times between neighboring openings. From this qualitative picture, the limiting small-F and large-F behaviors of the effective mobility and diffusivity are derived analytically. Brownian dynamics simulations are used to find these quantities at intermediate values of the driving force for various compartment lengths and opening radii. This work shows that the driving force may lead to qualitatively different anomalous transport features, depending on the geometry design

    Inequivalent representations of commutator or anticommutator rings of field operators and their applications

    Full text link
    Hamiltonian of a system in quantum field theory can give rise to infinitely many partition functions which correspond to infinitely many inequivalent representations of the canonical commutator or anticommutator rings of field operators. This implies that the system can theoretically exist in infinitely many Gibbs states. The system resides in the Gibbs state which corresponds to its minimal Helmholtz free energy at a given range of the thermodynamic variables. Individual inequivalent representations are associated with different thermodynamic phases of the system. The BCS Hamiltonian of superconductivity is chosen to be an explicit example for the demonstration of the important role of inequivalent representations in practical applications. Its analysis from the inequivalent representations' point of view has led to a recognition of a novel type of the superconducting phase transition.Comment: 25 pages, 6 figure

    Universal behavior of quantum Green's functions

    Full text link
    We consider a general one-particle Hamiltonian H = - \Delta_r + u(r) defined in a d-dimensional domain. The object of interest is the time-independent Green function G_z(r,r') = . Recently, in one dimension (1D), the Green's function problem was solved explicitly in inverse form, with diagonal elements of Green's function as prescribed variables. The first aim of this paper is to extract from the 1D inverse solution such information about Green's function which cannot be deduced directly from its definition. Among others, this information involves universal, i.e. u(r)-independent, behavior of Green's function close to the domain boundary. The second aim is to extend the inverse formalism to higher dimensions, especially to 3D, and to derive the universal form of Green's function for various shapes of the confining domain boundary.Comment: 46 pages, the shortened version submitted to J. Math. Phy

    A Generalization of the Stillinger-Lovett Sum Rules for the Two-Dimensional Jellium

    Full text link
    In the equilibrium statistical mechanics of classical Coulomb fluids, the long-range tail of the Coulomb potential gives rise to the Stillinger-Lovett sum rules for the charge correlation functions. For the jellium model of mobile particles of charge qq immersed in a neutralizing background, the fixing of one of the qq-charges induces a screening cloud of the charge density whose zeroth and second moments are determined just by the Stillinger-Lovett sum rules. In this paper, we generalize these sum rules to the screening cloud induced around a pointlike guest charge ZqZ q immersed in the bulk interior of the 2D jellium with the coupling constant Γ=ÎČq2\Gamma=\beta q^2 (ÎČ\beta is the inverse temperature), in the whole region of the thermodynamic stability of the guest charge Z>−2/ΓZ>-2/\Gamma. The derivation is based on a mapping technique of the 2D jellium at the coupling Γ\Gamma = (even positive integer) onto a discrete 1D anticommuting-field theory; we assume that the final results remain valid for all real values of Γ\Gamma corresponding to the fluid regime. The generalized sum rules reproduce for arbitrary coupling Γ\Gamma the standard Z=1 and the trivial Z=0 results. They are also checked in the Debye-H\"uckel limit Γ→0\Gamma\to 0 and at the free-fermion point Γ=2\Gamma=2. The generalized second-moment sum rule provides some exact information about possible sign oscillations of the induced charge density in space.Comment: 16 page

    Equation of state in the fugacity format for the two-dimensional Coulomb gas

    Full text link
    We derive the exact general form of the equation of state, in the fugacity format, for the two-dimensional Coulomb gas. Our results are valid in the conducting phase of the Coulomb gas, for temperatures above the Kosterlitz-Thouless transition. The derivation of the equation of state is based on the knowledge of the general form of the short-distance expansion of the correlation functions of the Coulomb gas. We explicitly compute the expansion up to order O(ζ6)O(\zeta^6) in the activity ζ\zeta. Our results are in very good agreement with Monte Carlo simulations at very low density

    Sine-Gordon/Coulomb Gas Soliton Correlation Functions and an Exact Evaluation of the Kosterlitz-Thouless Critical Exponent

    Full text link
    We present an exact derivation for the asymptotic large distance behavior of the spin two-point correlation function in the XY-model. This allows for the exact obtainment of the critical exponent η=1/4\eta=1/4 at the Kosterlitz-Thouless transition that occurs in this model and in the 2D neutral Coulomb gas and which has been previously obtained by scaling arguments. In order to do that, we use the language of sine-Gordon theory to obtain a Coulomb Gas description of the XY-model spin correlation function, which becomes identified with the soliton correlator of that theory. Using a representation in terms of bipolar coordinates we obtain an exact expression for the asymptotic large distance behavior of the relevant correlator at ÎČ2=8π\beta^2=8\pi, which corresponds to the Kosterlitz-Thouless transition. The result is obtained by approaching this point from the plasma (high-temperature) phase of the gas. The vortex correlator of the XY-model is also obtained using the same procedure.Comment: To appear in J. Stat. Phys., 11 page
    corecore