35 research outputs found

    Parabolic Trough System Operating with Nanofluids: Comparison with the Conventional Working Fluids and Influence on the System Performance

    Get PDF
    Abstract To analyse the behaviour of a parabolic trough operating with nanofluids, and compare its performance to the more traditional ones using oil, a model for the thermal analysis of the system has been developed and implemented in Matlab. The simulations have been performed for a suspension of Al 2 O 3 in synthetic oil and its characteristics compared to the corresponding basic liquid used by itself. The string has been assumed to have a length of 100 m and a concentrating surface area of 550 m 2 . The simulations have been carried out for different DNI (Direct normal irradiance) and variable mass flow, ensuring a temperature at the collector outlet below 400C. For a proper comparison, the following variables and efficiency indicators have been checked: power output, pumping power, thermal efficiency and overall efficiency of the parabolic trough system

    Melody Generation using an Interactive Evolutionary Algorithm

    Full text link
    Music generation with the aid of computers has been recently grabbed the attention of many scientists in the area of artificial intelligence. Deep learning techniques have evolved sequence production methods for this purpose. Yet, a challenging problem is how to evaluate generated music by a machine. In this paper, a methodology has been developed based upon an interactive evolutionary optimization method, with which the scoring of the generated melodies is primarily performed by human expertise, during the training. This music quality scoring is modeled using a Bi-LSTM recurrent neural network. Moreover, the innovative generated melody through a Genetic algorithm will then be evaluated using this Bi-LSTM network. The results of this mechanism clearly show that the proposed method is able to create pleasurable melodies with desired styles and pieces. This method is also quite fast, compared to the state-of-the-art data-oriented evolutionary systems.Comment: 5 pages, 4 images, submitted to MEDPRAI2019 conferenc

    Deep sequencing reveals persistence of cell-associated mumps vaccine virus in chronic encephalitis.

    Get PDF
    Routine childhood vaccination against measles, mumps and rubella has virtually abolished virus-related morbidity and mortality. Notwithstanding this, we describe here devastating neurological complications associated with the detection of live-attenuated mumps virus Jeryl Lynn (MuV(JL5)) in the brain of a child who had undergone successful allogeneic transplantation for severe combined immunodeficiency (SCID). This is the first confirmed report of MuV(JL5) associated with chronic encephalitis and highlights the need to exclude immunodeficient individuals from immunisation with live-attenuated vaccines. The diagnosis was only possible by deep sequencing of the brain biopsy. Sequence comparison of the vaccine batch to the MuV(JL5) isolated from brain identified biased hypermutation, particularly in the matrix gene, similar to those found in measles from cases of SSPE. The findings provide unique insights into the pathogenesis of paramyxovirus brain infections

    Clinical features, investigations, and outcomes of pediatric limbic encephalitis: A multicenter study

    Get PDF
    OBJECTIVES: To describe the clinical presentation, investigations, management, and disease course in pediatric autoimmune limbic encephalitis (LE). METHODS: In this retrospective observational study, from the UK Childhood Neuroinflammatory Disease network, we identified children from six tertiary centers with LE <18 years old between 2008 and 2021. Clinical and paraclinical data were retrieved from medical records. RESULTS: Twenty-five children fulfilling LE criteria were identified, with median age of 11 years (IQR 8, 14) and median follow-up of 24 months (IQR 18, 48). All children presented with seizures; 15/25 (60%) were admitted to intensive care. Neuroimaging demonstrated asymmetric mesial temporal changes in 8/25 (32%), and extra-limbic changes with claustrum involvement in 9/25 (38%). None were positive for LGI1/CASPR2 antibodies (Abs), 2/25 were positive for serum anti-NMDAR Abs, and 2/15 positive for anti-Hu Abs; one died from relapsing neuroblastoma. Two children had serum and CSF anti-GAD antibodies. Initial immune therapy included steroids in 23/25 (92%), intravenous immunoglobulin (IVIg) in 14/25 (56%), and plasma exchange in 7/25 (28%). The commonest second-line treatment was rituximab in 15/25 (60%). Median duration of hospital admission was 21 days (IQR 11, 30). At last follow-up, 13/25 (52%) had refractory seizures and 16/25 (64%) had memory impairment. Six children (24%) had modified Rankin Scale (mRS) scores ≥3. There was no significant difference in mRS, or long-term cognitive and epilepsy outcomes in those who received rituximab versus those who did not. INTERPRETATION: A diagnosis of autoimmune LE was associated with significant morbidity and adverse outcomes in this pediatric cohort

    Neuroinflammation, autoinflammation, splenomegaly and anemia caused by bi-allelic mutations in IRAK4

    Get PDF
    We describe a novel, severe autoinflammatory syndrome characterized by neuroinflammation, systemic autoinflammation, splenomegaly, and anemia (NASA) caused by bi-allelic mutations in IRAK4. IRAK-4 is a serine/threonine kinase with a pivotal role in innate immune signaling from toll-like receptors and production of pro-inflammatory cytokines. In humans, bi-allelic mutations in IRAK4 result in IRAK-4 deficiency and increased susceptibility to pyogenic bacterial infections, but autoinflammation has never been described. We describe 5 affected patients from 2 unrelated families with compound heterozygous mutations in IRAK4 (c.C877T (p.Q293*)/c.G958T (p.D320Y); and c.A86C (p.Q29P)/c.161 + 1G>A) resulting in severe systemic autoinflammation, massive splenomegaly and severe transfusion dependent anemia and, in 3/5 cases, severe neuroinflammation and seizures. IRAK-4 protein expression was reduced in peripheral blood mononuclear cells (PBMC) in affected patients. Immunological analysis demonstrated elevated serum tumor necrosis factor (TNF), interleukin (IL) 1 beta (IL-1β), IL-6, IL-8, interferon α2a (IFN-α2a), and interferon β (IFN-β); and elevated cerebrospinal fluid (CSF) IL-6 without elevation of CSF IFN-α despite perturbed interferon gene signature. Mutations were located within the death domain (DD; p.Q29P and splice site mutation c.161 + 1G>A) and kinase domain (p.Q293*/p.D320Y) of IRAK-4. Structure-based modeling of the DD mutation p.Q29P showed alteration in the alignment of a loop within the DD with loss of contact distance and hydrogen bond interactions with IRAK-1/2 within the myddosome complex. The kinase domain mutation p.D320Y was predicted to stabilize interactions within the kinase active site. While precise mechanisms of autoinflammation in NASA remain uncertain, we speculate that loss of negative regulation of IRAK-4 and IRAK-1; dysregulation of myddosome assembly and disassembly; or kinase active site instability may drive dysregulated IL-6 and TNF production. Blockade of IL-6 resulted in immediate and complete amelioration of systemic autoinflammation and anemia in all 5 patients treated; however, neuroinflammation has, so far proven recalcitrant to IL-6 blockade and the janus kinase (JAK) inhibitor baricitinib, likely due to lack of central nervous system penetration of both drugs. We therefore highlight that bi-allelic mutation in IRAK4 may be associated with a severe and complex autoinflammatory and neuroinflammatory phenotype that we have called NASA (neuroinflammation, autoinflammation, splenomegaly and anemia), in addition to immunodeficiency in humans

    International consensus recommendations for management of new onset refractory status epilepticus including febrile infection-related epilepsy syndrome: Statements and supporting evidence

    Get PDF
    Objective: This study was undertaken to develop consensus-based recommendations for the management of adult and pediatric patients with new onset refractory status epilepticus (NORSE)/febrile infection-related epilepsy syndrome (FIRES) based on best evidence and experience. Methods: The Delphi methodology was followed. A facilitator group of nine experts was established, who defined the scope, users, and suggestions for recommendations. Following a review of the current literature, recommendation statements concerning diagnosis, treatment, and research directions were generated, which were then rated on a scale of 1 (strongly disagree) to 9 (strongly agree) by a panel of 48 experts in the field. Consensus that a statement was appropriate was reached if the median score was ≥7 and inappropriate if the median score was ≤3. The analysis of evidence was mapped to the results of each statement included in the Delphi survey. Results: Overall, 85 recommendation statements achieved consensus. The recommendations are divided into five sections: (1) disease characteristics; (2) diagnostic testing and sampling; (3) acute treatment; (4) treatment in the postacute phase; and (5) research, registries, and future directions in NORSE/FIRES. The detailed results and discussion of all 85 statements are outlined herein. A corresponding summary of findings and practical flowsheets are presented in a companion article. Significance: This detailed analysis offers insight into the supporting evidence and the current gaps in the literature that are associated with expert consensus statements related to NORSE/FIRES. The recommendations generated by this consensus can be used as a guide for the diagnosis, evaluation, and management of patients with NORSE/FIRES, and for planning of future research
    corecore