3 research outputs found

    Graphene oxide and zinc oxide decorated chitosan nanocomposite biofilms for packaging applications

    No full text
    Recently, due to sustainable development and environmental protection policies, there is increasing interest in the development of new biodegradable polymer-based multifunctional composites. Chitosan is one of the most remarkable and preferred biopolymers, which is environmentally friendly as well as renewable, biocompatible, and inexpensive. Though it has a wide range of potential applications, the major limitation of chitosan - the problem of poor mechanical performance needs to be solved. In this work, graphene oxide was first produced and then used to manufacture a chitosan/graphene oxide/zinc oxide composite film through a casting method. The properties of the chitosan film and the chitosan/graphene oxide/zinc oxide composite film were investigated using Fourier transform infrared spectroscopy, mechanical, thermal gravimetric, and ultraviolet (UV)-visible spectroscopy analyses. The results showed that the incorporation of graphene oxide and zinc oxide into the chitosan matrix resulted in enhanced mechanical properties and thermal stability of chitosan biocomposite films. The graphene oxide- and zinc oxide-reinforced chitosan film showed 2527 MPa and 55.72 MPa of Young's modulus and tensile strength, respectively, while neat chitosan showed only 1549 MPa and 37.91 MPa of Young's modulus and tensile strength, respectively. Conversely, the addition of graphene oxide decreased the transmittance, notably in the UV region

    Mechanical characterization of highly porous b-Si3N4 ceramics fabricated via partial sintering & starch addition

    No full text
    In this study, porous beta-Si3N4 ceramics containing limited amount of Sm2O3 and CaO as sintering aids were produced by addition of potato starch (10 and 20 vol.%) and partial sintering. Two different Si3N4 powders, alpha- and beta-, were used as starting materials. Scanning electron microscopy investigations revealed that development of elongated beta-Si3N4 grains were much more pronounced when alpha-Si3N4 starting powder was used. Even though porosity values of the compositions prepared by using alpha-Si3N4 (similar to 57.0-58.4%) is significantly higher than the samples produced by beta-Si3N4 (42.6%), no significant change was observed for the bending strength, fracture toughness and Weibull modulus. This indicates that microstructural features have a significant contribution to the mechanical properties of the porous materials in terms of bending strength and fracture toughness
    corecore