6 research outputs found

    Human platelet concentrates treated with microbicidal 405 nm light retain hemostasis activity

    Get PDF
    Chemical and UV light-based pathogen reduction technologies are currently in use for human platelet concentrates (PCs) to enhance safety from transfusion-transmitted infections. Relative to UV light, 405 nm violet-blue light in the visible spectrum is known to be less harmful. Hence, in this report for the first time, we have assessed the global hemostasis activity of PCs stored in plasma and the activities of six plasma coagulation factors (CFs) as a measure of in vitro hemostatic activity following exposure to the microbicidal 405 nm light. Apheresis PC samples collected from each screened human donor (n = 22) were used for testing of PCs and platelet poor plasma (PPP). Both PCs and PPPs were treated for 5 h with 405 nm light to achieve a previously established microbicidal light dose of 270 J/cm2. Activated partial thromboplastin time and prothrombin time-based potency assays using a coagulation analyzer and hemostatic capacity via Thromboelastography were analyzed. Thromboelastography analysis of the light-treated PCs and plasma present in the PCs showed little difference between the treated and untreated samples. Further, plasma present in the PCs during the light treatment demonstrated a better stability in potency assays for several coagulation factors compared to the plasma alone prepared from PCs first and subjected to the light treatment separately. Overall, PCs stored in plasma treated with 405 nm violet-blue light retain activity for hemostasis

    The preclinical validation of 405 nm light parasiticidal efficacy on Leishmania donovani in ex vivo platelets in a rag2−/− mouse model

    Get PDF
    Violet–blue light of 405 nm in the visible spectrum at a dose of 270 J/cm2 alone has been shown to be an effective microbicidal tool for inactivating several bacteria, HIV-1, and Trypanosoma cruzi in ex vivo plasma and platelets. Unlike chemical- and ultraviolet (UV)-based pathogen inactivation methods for plasma and platelet safety, 405 nm light is shown to be less toxic to host cells at light doses that are microbicidal. In this report, we evaluated the parasiticidal activity of a 405 nm light treatment on platelets spiked with the Leishmania donovani parasite. Following the light treatment, parasite viability was observed to be near zero in both low- and high-titer-spiked platelets relative to controls. Furthermore, to test the residual infectivity after inactivation in vivo, the light-treated low-titer L. donovani-spiked platelets were evaluated in an immunodeficient Rag2−/− mouse model and monitored for 9 weeks. The parasiticidal efficacy of 405 nm light was evident from the lack of a presence of parasites in the mice spleens. Parasiticidal activity was confirmed to be mediated through 405 nm light-induced reactive oxygen species (ROS), as quantitatively measured by a 2′,7′-Dichlorodihydrofluorescein diacetate (H2DCFDA)-based assay. Overall, these results confirm the complete inactivation of L. donovani spiked in ex vivo platelets by 405 nm light treatment and exemplify the utility of the Rag2−/− mouse infection model for the preclinical validation of the parasiticidal efficacy of 405 nm light and this light-based technology as a potential PRT for ex vivo platelets

    Incompatibility Group I1 (IncI1) Plasmids: Their Genetics, Biology, and Public Health Relevance

    Get PDF
    Bacterial plasmids are extrachromosomal genetic elements that often carry antimicrobial resistance (AMR) genes and genes encoding increased virulence and can be transmissible among bacteria by conjugation. One key group of plasmids is the incompatibility group I1 (IncI1) plasmids, which have been isolated from multiple Enterobacteriaceae of food animal origin and clinically ill human patients. The IncI group of plasmids were initially characterized due to their sensitivity to the filamentous bacteriophage If1. Two prototypical IncI1 plasmids, R64 and pColIb-P9, have been extensively studied, and the plasmids consist of unique regions associated with plasmid replication, plasmid stability/maintenance, transfer machinery apparatus, single-stranded DNA transfer, and antimicrobial resistance. IncI1 plasmids are somewhat unique in that they encode two types of sex pili, a thick, rigid pilus necessary for mating and a thin, flexible pilus that helps stabilize bacteria for plasmid transfer in liquid environments. A key public health concern with IncI1 plasmids is their ability to carry antimicrobial resistance genes, including those associated with critically important antimicrobials used to treat severe cases of enteric infections, including the third-generation cephalosporins. Because of the potential importance of these plasmids, this review focuses on the distribution of the plasmids, their phenotypic characteristics associated with antimicrobial resistance and virulence, and their replication, maintenance, and transfer

    The Preclinical Validation of 405 nm Light Parasiticidal Efficacy on <i>Leishmania donovani</i> in Ex Vivo Platelets in a Rag2<sup>−/−</sup> Mouse Model

    No full text
    Violet–blue light of 405 nm in the visible spectrum at a dose of 270 J/cm2 alone has been shown to be an effective microbicidal tool for inactivating several bacteria, HIV-1, and Trypanosoma cruzi in ex vivo plasma and platelets. Unlike chemical- and ultraviolet (UV)-based pathogen inactivation methods for plasma and platelet safety, 405 nm light is shown to be less toxic to host cells at light doses that are microbicidal. In this report, we evaluated the parasiticidal activity of a 405 nm light treatment on platelets spiked with the Leishmania donovani parasite. Following the light treatment, parasite viability was observed to be near zero in both low- and high-titer-spiked platelets relative to controls. Furthermore, to test the residual infectivity after inactivation in vivo, the light-treated low-titer L. donovani-spiked platelets were evaluated in an immunodeficient Rag2−/− mouse model and monitored for 9 weeks. The parasiticidal efficacy of 405 nm light was evident from the lack of a presence of parasites in the mice spleens. Parasiticidal activity was confirmed to be mediated through 405 nm light-induced reactive oxygen species (ROS), as quantitatively measured by a 2′,7′-Dichlorodihydrofluorescein diacetate (H2DCFDA)-based assay. Overall, these results confirm the complete inactivation of L. donovani spiked in ex vivo platelets by 405 nm light treatment and exemplify the utility of the Rag2−/− mouse infection model for the preclinical validation of the parasiticidal efficacy of 405 nm light and this light-based technology as a potential PRT for ex vivo platelets

    Evidence of Multiple Virulence Subtypes in Nosocomial and Community-Associated MRSA Genotypes in Companion Animals from the Upper Midwestern and Northeastern United States

    No full text
    Objective: Not much is known about the zoonotic transmission of methicillin-resistant Staphylococcus aureus (MRSA) in companion animals in the United States. We report the rate of prevalence of S. aureus and MRSA recovered from clinical samples of animals requiring treatment at veterinary clinics throughout the upper midwestern and northeastern United States
    corecore